jnmrr commited on
Commit
66d10c1
·
verified ·
1 Parent(s): dfbbd3a

Model save

Browse files
Files changed (1) hide show
  1. README.md +13 -13
README.md CHANGED
@@ -21,7 +21,7 @@ model-index:
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
- value: 0.3155737704918033
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -31,17 +31,17 @@ should probably proofread and complete it, then remove this comment. -->
31
 
32
  This model is a fine-tuned version of [microsoft/dit-base](https://huggingface.co/microsoft/dit-base) on the imagefolder dataset.
33
  It achieves the following results on the evaluation set:
34
- - Loss: 1.0995
35
- - Accuracy: 0.3156
36
- - Weighted f1: 0.2119
37
- - Micro f1: 0.3156
38
- - Macro f1: 0.2258
39
- - Weighted recall: 0.3156
40
- - Micro recall: 0.3156
41
- - Macro recall: 0.3347
42
- - Weighted precision: 0.2311
43
- - Micro precision: 0.3156
44
- - Macro precision: 0.2480
45
 
46
  ## Model description
47
 
@@ -75,7 +75,7 @@ The following hyperparameters were used during training:
75
 
76
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
77
  |:-------------:|:------:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
78
- | 1.2333 | 0.9855 | 17 | 1.0995 | 0.3156 | 0.2119 | 0.3156 | 0.2258 | 0.3156 | 0.3156 | 0.3347 | 0.2311 | 0.3156 | 0.2480 |
79
 
80
 
81
  ### Framework versions
 
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
+ value: 0.3483606557377049
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
31
 
32
  This model is a fine-tuned version of [microsoft/dit-base](https://huggingface.co/microsoft/dit-base) on the imagefolder dataset.
33
  It achieves the following results on the evaluation set:
34
+ - Loss: 1.0820
35
+ - Accuracy: 0.3484
36
+ - Weighted f1: 0.2183
37
+ - Micro f1: 0.3484
38
+ - Macro f1: 0.2173
39
+ - Weighted recall: 0.3484
40
+ - Micro recall: 0.3484
41
+ - Macro recall: 0.3545
42
+ - Weighted precision: 0.4016
43
+ - Micro precision: 0.3484
44
+ - Macro precision: 0.3764
45
 
46
  ## Model description
47
 
 
75
 
76
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
77
  |:-------------:|:------:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
78
+ | 1.7064 | 0.9855 | 17 | 1.0820 | 0.3484 | 0.2183 | 0.3484 | 0.2173 | 0.3484 | 0.3484 | 0.3545 | 0.4016 | 0.3484 | 0.3764 |
79
 
80
 
81
  ### Framework versions