jupyterjazz
commited on
Commit
·
851aaca
1
Parent(s):
5418705
refactor: set task in lora class rather than xlm roberta
Browse files- modeling_lora.py +43 -7
- modeling_xlm_roberta.py +1 -24
modeling_lora.py
CHANGED
@@ -1,18 +1,17 @@
|
|
1 |
import math
|
2 |
import os
|
|
|
3 |
from functools import partial
|
4 |
-
from typing import Iterator, Optional, Tuple, Union
|
5 |
|
|
|
6 |
import torch
|
7 |
import torch.nn.utils.parametrize as parametrize
|
8 |
from torch import nn
|
9 |
from torch.nn import Parameter
|
10 |
from transformers import PretrainedConfig
|
11 |
|
12 |
-
from .modeling_xlm_roberta import
|
13 |
-
XLMRobertaFlashConfig,
|
14 |
-
XLMRobertaModel,
|
15 |
-
)
|
16 |
|
17 |
|
18 |
def initialized_weights(
|
@@ -231,7 +230,6 @@ class XLMRobertaLoRA(XLMRobertaModel):
|
|
231 |
# By default, disable LoRA until it's specified which adapter/task to use
|
232 |
self.current_task = None
|
233 |
|
234 |
-
|
235 |
@property
|
236 |
def main_params_trainable(self):
|
237 |
return self._main_params_trainable
|
@@ -273,7 +271,8 @@ class XLMRobertaLoRA(XLMRobertaModel):
|
|
273 |
pretrained_model_name_or_path, *model_args, **kwargs
|
274 |
)
|
275 |
else:
|
276 |
-
|
|
|
277 |
return cls(config)
|
278 |
|
279 |
def _register_lora(self, num_adaptations, rank, dropout_p, alpha):
|
@@ -327,3 +326,40 @@ class XLMRobertaLoRA(XLMRobertaModel):
|
|
327 |
):
|
328 |
if "lora" in name or self.main_params_trainable:
|
329 |
yield name, param
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import math
|
2 |
import os
|
3 |
+
import warnings
|
4 |
from functools import partial
|
5 |
+
from typing import Iterator, List, Optional, Tuple, Union
|
6 |
|
7 |
+
import numpy as np
|
8 |
import torch
|
9 |
import torch.nn.utils.parametrize as parametrize
|
10 |
from torch import nn
|
11 |
from torch.nn import Parameter
|
12 |
from transformers import PretrainedConfig
|
13 |
|
14 |
+
from .modeling_xlm_roberta import XLMRobertaFlashConfig, XLMRobertaModel
|
|
|
|
|
|
|
15 |
|
16 |
|
17 |
def initialized_weights(
|
|
|
230 |
# By default, disable LoRA until it's specified which adapter/task to use
|
231 |
self.current_task = None
|
232 |
|
|
|
233 |
@property
|
234 |
def main_params_trainable(self):
|
235 |
return self._main_params_trainable
|
|
|
271 |
pretrained_model_name_or_path, *model_args, **kwargs
|
272 |
)
|
273 |
else:
|
274 |
+
dtype = config.torch_dtype if config.torch_dtype else torch.bfloat16
|
275 |
+
torch.set_default_dtype(dtype)
|
276 |
return cls(config)
|
277 |
|
278 |
def _register_lora(self, num_adaptations, rank, dropout_p, alpha):
|
|
|
326 |
):
|
327 |
if "lora" in name or self.main_params_trainable:
|
328 |
yield name, param
|
329 |
+
|
330 |
+
@torch.inference_mode()
|
331 |
+
def encode(
|
332 |
+
self,
|
333 |
+
*args,
|
334 |
+
task: Optional[str] = None,
|
335 |
+
**kwargs,
|
336 |
+
) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
|
337 |
+
"""
|
338 |
+
Computes sentence embeddings
|
339 |
+
|
340 |
+
task(`str`, *optional*, defaults to None):
|
341 |
+
Specifies the task for which the encoding is intended. This
|
342 |
+
controls the use of specialized LoRA adapters that are tuned for specific tasks.
|
343 |
+
If provided, the corresponding LoRA adapter is enabled, enhancing the model's
|
344 |
+
performance for that task. If `None` or not provided, LoRA is disabled, and the
|
345 |
+
model uses its original, general-purpose weights.
|
346 |
+
"""
|
347 |
+
lora_adapter_num = None
|
348 |
+
if self.config.lora_adaptations:
|
349 |
+
if task:
|
350 |
+
if task in self.config.lora_adaptations:
|
351 |
+
lora_adapter_num = self.config.lora_adaptations.index(task)
|
352 |
+
else:
|
353 |
+
raise ValueError(
|
354 |
+
f"Unsupported task '{task}'. "
|
355 |
+
f"Supported tasks are: {', '.join(self.config.lora_adaptations)}."
|
356 |
+
)
|
357 |
+
else:
|
358 |
+
warnings.warn(
|
359 |
+
f"Task-specific embeddings are disabled. To enable, specify the `task` "
|
360 |
+
f"argument with one of the supported tasks: {', '.join(self.config.lora_adaptations)}",
|
361 |
+
category=UserWarning,
|
362 |
+
)
|
363 |
+
self.current_task = lora_adapter_num
|
364 |
+
|
365 |
+
return super().encode(*args, **kwargs)
|
modeling_xlm_roberta.py
CHANGED
@@ -452,7 +452,6 @@ class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
|
452 |
convert_to_tensor: bool = False,
|
453 |
device: Optional[torch.device] = None,
|
454 |
normalize_embeddings: bool = False,
|
455 |
-
task: Optional[str] = None,
|
456 |
**tokenizer_kwargs,
|
457 |
) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
|
458 |
"""
|
@@ -482,12 +481,6 @@ class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
|
482 |
If set to true, returned vectors will have length 1. In that case, the
|
483 |
faster dot-product (util.dot_score) instead of cosine similarity can
|
484 |
be used.
|
485 |
-
task(`str`, *optional*, defaults to None):
|
486 |
-
Specifies the task for which the encoding is intended. This
|
487 |
-
controls the use of specialized LoRA adapters that are tuned for specific tasks.
|
488 |
-
If provided, the corresponding LoRA adapter is enabled, enhancing the model's
|
489 |
-
performance for that task. If `None` or not provided, LoRA is disabled, and the
|
490 |
-
model uses its original, general-purpose weights.
|
491 |
tokenizer_kwargs(`Dict[str, Any]`, *optional*, defaults to {}):
|
492 |
Keyword arguments for the tokenizer
|
493 |
Returns:
|
@@ -525,22 +518,6 @@ class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
|
525 |
if device is not None:
|
526 |
self.to(device)
|
527 |
|
528 |
-
lora_adapter_num = None
|
529 |
-
if self.config.lora_adaptations:
|
530 |
-
if task:
|
531 |
-
if task in self.config.lora_adaptations:
|
532 |
-
lora_adapter_num = self.config.lora_adaptations.index(task)
|
533 |
-
else:
|
534 |
-
raise ValueError(
|
535 |
-
f"Unsupported task '{task}'. "
|
536 |
-
f"Supported tasks are: {', '.join(self.config.lora_adaptations)}.")
|
537 |
-
else:
|
538 |
-
logger.warning(
|
539 |
-
f"Task-specific embeddings are disabled. To enable, specify the `task` "
|
540 |
-
f"argument with one of the supported tasks: {', '.join(self.config.lora_adaptations)}"
|
541 |
-
)
|
542 |
-
|
543 |
-
|
544 |
permutation = np.argsort([-len(i) for i in sentences])
|
545 |
inverse_permutation = np.argsort(permutation)
|
546 |
sentences = [sentences[idx] for idx in permutation]
|
@@ -570,7 +547,7 @@ class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
|
570 |
return_tensors='pt',
|
571 |
**tokenizer_kwargs,
|
572 |
).to(self.device)
|
573 |
-
token_embs = self.forward(**encoded_input
|
574 |
|
575 |
# Accumulate in fp32 to avoid overflow
|
576 |
token_embs = token_embs.float()
|
|
|
452 |
convert_to_tensor: bool = False,
|
453 |
device: Optional[torch.device] = None,
|
454 |
normalize_embeddings: bool = False,
|
|
|
455 |
**tokenizer_kwargs,
|
456 |
) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
|
457 |
"""
|
|
|
481 |
If set to true, returned vectors will have length 1. In that case, the
|
482 |
faster dot-product (util.dot_score) instead of cosine similarity can
|
483 |
be used.
|
|
|
|
|
|
|
|
|
|
|
|
|
484 |
tokenizer_kwargs(`Dict[str, Any]`, *optional*, defaults to {}):
|
485 |
Keyword arguments for the tokenizer
|
486 |
Returns:
|
|
|
518 |
if device is not None:
|
519 |
self.to(device)
|
520 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
521 |
permutation = np.argsort([-len(i) for i in sentences])
|
522 |
inverse_permutation = np.argsort(permutation)
|
523 |
sentences = [sentences[idx] for idx in permutation]
|
|
|
547 |
return_tensors='pt',
|
548 |
**tokenizer_kwargs,
|
549 |
).to(self.device)
|
550 |
+
token_embs = self.forward(**encoded_input)[0]
|
551 |
|
552 |
# Accumulate in fp32 to avoid overflow
|
553 |
token_embs = token_embs.float()
|