alaeddine-13
commited on
Commit
·
f2416e2
1
Parent(s):
e19c7cb
code clean up
Browse files- bert_padding.py +0 -156
- config.json +5 -5
- configuration_jbert.py +0 -26
- modeling_jbert.py +0 -908
bert_padding.py
DELETED
@@ -1,156 +0,0 @@
|
|
1 |
-
# Copyright 2022 MosaicML Examples authors
|
2 |
-
# SPDX-License-Identifier: Apache-2.0
|
3 |
-
|
4 |
-
# Adapted from https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/bert_padding.py
|
5 |
-
# Which was adapted from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/padding.py
|
6 |
-
|
7 |
-
"""Helper functions for padding and unpadding batches. """
|
8 |
-
|
9 |
-
from typing import Tuple, cast
|
10 |
-
|
11 |
-
import torch
|
12 |
-
import torch.nn.functional as F
|
13 |
-
from einops import rearrange, repeat
|
14 |
-
|
15 |
-
|
16 |
-
class IndexFirstAxis(torch.autograd.Function):
|
17 |
-
@staticmethod
|
18 |
-
def forward(ctx, input: torch.Tensor, indices: torch.Tensor) -> torch.Tensor:
|
19 |
-
"""Get just the values of `input` which are at `indices`.
|
20 |
-
|
21 |
-
Arguments:
|
22 |
-
ctx: the autograd context object
|
23 |
-
input: (b, ...) 2+ dimensional tensor
|
24 |
-
indices: (num_idx) 1D tensor
|
25 |
-
"""
|
26 |
-
ctx.save_for_backward(indices)
|
27 |
-
assert input.ndim >= 2
|
28 |
-
ctx.first_axis_dim, other_shape = (
|
29 |
-
input.shape[0],
|
30 |
-
input.shape[1:],
|
31 |
-
) # type: ignore
|
32 |
-
second_dim = other_shape.numel() # product of sizes of all but first dimension
|
33 |
-
# TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
|
34 |
-
return torch.gather(
|
35 |
-
rearrange(input, 'b ... -> b (...)'), # (b, ...) -> (b, second_dim)
|
36 |
-
0,
|
37 |
-
repeat(
|
38 |
-
indices, 'z -> z d', d=second_dim
|
39 |
-
), # (indices,) -> (indices, second_dim)
|
40 |
-
).reshape(
|
41 |
-
-1, *other_shape
|
42 |
-
) # (num_idx, ...)
|
43 |
-
|
44 |
-
@staticmethod
|
45 |
-
def backward(ctx, grad_output: torch.Tensor) -> Tuple[torch.Tensor, None]:
|
46 |
-
(indices,) = ctx.saved_tensors
|
47 |
-
assert grad_output.ndim >= 2
|
48 |
-
other_shape = grad_output.shape[1:]
|
49 |
-
grad_output = rearrange(grad_output, 'b ... -> b (...)')
|
50 |
-
grad_input = torch.zeros(
|
51 |
-
[ctx.first_axis_dim, grad_output.shape[1]],
|
52 |
-
device=grad_output.device,
|
53 |
-
dtype=grad_output.dtype,
|
54 |
-
)
|
55 |
-
# TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing.
|
56 |
-
# grad_input[indices] = grad_output
|
57 |
-
grad_input.scatter_(
|
58 |
-
0, repeat(indices, 'z -> z d', d=grad_output.shape[1]), grad_output
|
59 |
-
)
|
60 |
-
return grad_input.reshape(ctx.first_axis_dim, *other_shape), None
|
61 |
-
|
62 |
-
|
63 |
-
index_first_axis = IndexFirstAxis.apply
|
64 |
-
|
65 |
-
|
66 |
-
class IndexPutFirstAxis(torch.autograd.Function):
|
67 |
-
@staticmethod
|
68 |
-
def forward(
|
69 |
-
ctx, values: torch.Tensor, indices: torch.Tensor, first_axis_dim
|
70 |
-
) -> torch.Tensor:
|
71 |
-
ctx.save_for_backward(indices)
|
72 |
-
assert indices.ndim == 1
|
73 |
-
assert values.ndim >= 2
|
74 |
-
output = torch.zeros(
|
75 |
-
first_axis_dim, *values.shape[1:], device=values.device, dtype=values.dtype
|
76 |
-
)
|
77 |
-
output[indices] = values
|
78 |
-
return output
|
79 |
-
|
80 |
-
@staticmethod
|
81 |
-
def backward(ctx, grad_output: torch.Tensor) -> Tuple[torch.Tensor, None, None]:
|
82 |
-
(indices,) = ctx.saved_tensors
|
83 |
-
grad_values = grad_output[indices]
|
84 |
-
return grad_values, None, None
|
85 |
-
|
86 |
-
|
87 |
-
index_put_first_axis = IndexPutFirstAxis.apply
|
88 |
-
|
89 |
-
|
90 |
-
def unpad_input(
|
91 |
-
hidden_states: torch.Tensor,
|
92 |
-
attention_mask: torch.Tensor,
|
93 |
-
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
|
94 |
-
"""Remove padding from input sequences.
|
95 |
-
|
96 |
-
Arguments:
|
97 |
-
hidden_states: (batch, seqlen, ...)
|
98 |
-
attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
|
99 |
-
|
100 |
-
Returns:
|
101 |
-
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
|
102 |
-
indices: (total_nnz)
|
103 |
-
cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states.
|
104 |
-
max_seqlen_in_batch: int ()
|
105 |
-
"""
|
106 |
-
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
107 |
-
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
108 |
-
max_seqlen_in_batch = int(seqlens_in_batch.max().item())
|
109 |
-
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
110 |
-
# TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the
|
111 |
-
# bool mask, then call nonzero to get the indices, then index with those. The indices is @dim
|
112 |
-
# times larger than it needs to be, wasting memory. It's faster and more memory-efficient to
|
113 |
-
# index with integer indices. Moreover, torch's index is a bit slower than it needs to be,
|
114 |
-
# so we write custom forward and backward to make it a bit faster.
|
115 |
-
hidden_states = cast(
|
116 |
-
torch.Tensor,
|
117 |
-
index_first_axis(rearrange(hidden_states, 'b s ... -> (b s) ...'), indices),
|
118 |
-
)
|
119 |
-
return hidden_states, indices, cu_seqlens, max_seqlen_in_batch
|
120 |
-
|
121 |
-
|
122 |
-
def unpad_input_only(
|
123 |
-
hidden_states: torch.Tensor,
|
124 |
-
attention_mask: torch.Tensor,
|
125 |
-
) -> torch.Tensor:
|
126 |
-
"""Like unpad_input, but only return the unpadded first tensor.
|
127 |
-
|
128 |
-
Save a small amount of overhead.
|
129 |
-
|
130 |
-
Arguments:
|
131 |
-
hidden_states: (batch, seqlen, ...)
|
132 |
-
attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
|
133 |
-
|
134 |
-
Returns:
|
135 |
-
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
|
136 |
-
"""
|
137 |
-
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
138 |
-
return index_first_axis(rearrange(hidden_states, 'b s ... -> (b s) ...'), indices)
|
139 |
-
|
140 |
-
|
141 |
-
def pad_input(
|
142 |
-
hidden_states: torch.Tensor, indices: torch.Tensor, batch: int, seqlen: int
|
143 |
-
) -> torch.Tensor:
|
144 |
-
"""Add padding to sequences.
|
145 |
-
|
146 |
-
Arguments:
|
147 |
-
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
|
148 |
-
indices: (total_nnz)
|
149 |
-
batch: int batch_size
|
150 |
-
seqlen: int max sequence length
|
151 |
-
|
152 |
-
Returns:
|
153 |
-
hidden_states: (batch, seqlen, ...)
|
154 |
-
"""
|
155 |
-
output = index_put_first_axis(hidden_states, indices, batch * seqlen)
|
156 |
-
return rearrange(output, '(b s) ... -> b s ...', b=batch)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
CHANGED
@@ -2,14 +2,14 @@
|
|
2 |
"_name_or_path": "jinaai/jina-bert-s-en-v1",
|
3 |
"model_max_length": 8192,
|
4 |
"architectures": [
|
5 |
-
"
|
6 |
],
|
7 |
"attention_probs_dropout_prob": 0.0,
|
8 |
"auto_map": {
|
9 |
-
"AutoConfig": "
|
10 |
-
"AutoModelForMaskedLM": "
|
11 |
-
"AutoModel": "
|
12 |
-
"AutoModelForSequenceClassification": "
|
13 |
},
|
14 |
"classifier_dropout": null,
|
15 |
"gradient_checkpointing": false,
|
|
|
2 |
"_name_or_path": "jinaai/jina-bert-s-en-v1",
|
3 |
"model_max_length": 8192,
|
4 |
"architectures": [
|
5 |
+
"JinaBertForMaskedLM"
|
6 |
],
|
7 |
"attention_probs_dropout_prob": 0.0,
|
8 |
"auto_map": {
|
9 |
+
"AutoConfig": "jinaai/jina-embedding-v2--configuration_bert.JinaBertConfig",
|
10 |
+
"AutoModelForMaskedLM": "jinaai/jina-embedding-v2--modeling_bert.JinaBertForMaskedLM",
|
11 |
+
"AutoModel": "jinaai/jina-embedding-v2--modeling_bert.JinaBertModel",
|
12 |
+
"AutoModelForSequenceClassification": "jinaai/jina-embedding-v2--modeling_bert.JinaBertForSequenceClassification"
|
13 |
},
|
14 |
"classifier_dropout": null,
|
15 |
"gradient_checkpointing": false,
|
configuration_jbert.py
DELETED
@@ -1,26 +0,0 @@
|
|
1 |
-
# Copyright 2022 MosaicML Examples authors
|
2 |
-
# SPDX-License-Identifier: Apache-2.0
|
3 |
-
|
4 |
-
from transformers import BertConfig as TransformersBertConfig
|
5 |
-
|
6 |
-
|
7 |
-
class JBertConfig(TransformersBertConfig):
|
8 |
-
def __init__(
|
9 |
-
self,
|
10 |
-
model_max_length: int = 8192,
|
11 |
-
attention_probs_dropout_prob: float = 0.0,
|
12 |
-
**kwargs,
|
13 |
-
):
|
14 |
-
"""Configuration class for MosaicBert.
|
15 |
-
|
16 |
-
Args:
|
17 |
-
model_max_length (int): Use `model_max_length` to determine how large of an alibi tensor to
|
18 |
-
create when initializing the model. You should be able to ignore this parameter in most cases.
|
19 |
-
Defaults to 8192.
|
20 |
-
attention_probs_dropout_prob (float): By default, turn off attention dropout in Mosaic BERT
|
21 |
-
(otherwise, Flash Attention will be off by default). Defaults to 0.0.
|
22 |
-
"""
|
23 |
-
super().__init__(
|
24 |
-
attention_probs_dropout_prob=attention_probs_dropout_prob, **kwargs
|
25 |
-
)
|
26 |
-
self.model_max_length = model_max_length
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modeling_jbert.py
DELETED
@@ -1,908 +0,0 @@
|
|
1 |
-
# Copyright 2022 MosaicML Examples authors
|
2 |
-
# SPDX-License-Identifier: Apache-2.0
|
3 |
-
|
4 |
-
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
5 |
-
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
|
6 |
-
# Copyright (c) 2022, Tri Dao.
|
7 |
-
|
8 |
-
import copy
|
9 |
-
import logging
|
10 |
-
import math
|
11 |
-
import warnings
|
12 |
-
from typing import List, Optional, Tuple, Union
|
13 |
-
|
14 |
-
import torch
|
15 |
-
import torch.nn as nn
|
16 |
-
from einops import rearrange
|
17 |
-
from transformers.activations import ACT2FN
|
18 |
-
from transformers.modeling_outputs import (
|
19 |
-
MaskedLMOutput,
|
20 |
-
SequenceClassifierOutput,
|
21 |
-
BaseModelOutputWithPastAndCrossAttentions,
|
22 |
-
BaseModelOutputWithPoolingAndCrossAttentions,
|
23 |
-
)
|
24 |
-
from transformers.models.bert.modeling_bert import BertPreTrainedModel
|
25 |
-
|
26 |
-
from .bert_padding import (index_first_axis, index_put_first_axis, pad_input,
|
27 |
-
unpad_input, unpad_input_only)
|
28 |
-
from .configuration_jbert import JBertConfig
|
29 |
-
|
30 |
-
logger = logging.getLogger(__name__)
|
31 |
-
|
32 |
-
|
33 |
-
class JBertEmbeddings(nn.Module):
|
34 |
-
"""Construct the embeddings for words, ignoring position.
|
35 |
-
|
36 |
-
There are no positional embeddings since we use ALiBi and token_type
|
37 |
-
embeddings.
|
38 |
-
|
39 |
-
This module is modeled after the Hugging Face BERT's
|
40 |
-
:class:`~transformers.model.bert.modeling_bert.BertEmbeddings`, but is
|
41 |
-
modified to implement ALiBi. The key change is
|
42 |
-
that position embeddings are removed. Position information instead comes
|
43 |
-
from attention biases that scale linearly with the position distance
|
44 |
-
between query and key tokens.
|
45 |
-
|
46 |
-
This module ignores the `position_ids` input to the `forward` method.
|
47 |
-
"""
|
48 |
-
|
49 |
-
def __init__(self, config):
|
50 |
-
super().__init__()
|
51 |
-
self.word_embeddings = nn.Embedding(
|
52 |
-
config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id
|
53 |
-
)
|
54 |
-
# ALiBi doesn't use position embeddings
|
55 |
-
self.token_type_embeddings = nn.Embedding(
|
56 |
-
config.type_vocab_size, config.hidden_size
|
57 |
-
)
|
58 |
-
|
59 |
-
# self.LayerNorm is not snake-cased to stick with TensorFlow model
|
60 |
-
# variable name and be able to load any TensorFlow checkpoint file
|
61 |
-
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
62 |
-
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
63 |
-
self.register_buffer(
|
64 |
-
"token_type_ids", torch.zeros((1, config.model_max_length), dtype=torch.long), persistent=False
|
65 |
-
)
|
66 |
-
|
67 |
-
def forward(
|
68 |
-
self,
|
69 |
-
input_ids: Optional[torch.LongTensor] = None,
|
70 |
-
token_type_ids: Optional[torch.LongTensor] = None,
|
71 |
-
position_ids: Optional[torch.LongTensor] = None,
|
72 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
73 |
-
past_key_values_length: int = 0,
|
74 |
-
) -> torch.Tensor:
|
75 |
-
if (input_ids is not None) == (inputs_embeds is not None):
|
76 |
-
raise ValueError('Must specify either input_ids or input_embeds!')
|
77 |
-
if input_ids is not None:
|
78 |
-
input_shape = input_ids.size()
|
79 |
-
else:
|
80 |
-
assert inputs_embeds is not None # just for type checking
|
81 |
-
input_shape = inputs_embeds.size()[:-1]
|
82 |
-
|
83 |
-
seq_length = input_shape[1]
|
84 |
-
|
85 |
-
if position_ids is not None:
|
86 |
-
warnings.warn('position_ids is not used in JBertEmbeddings as it does not have position embeddings.')
|
87 |
-
|
88 |
-
# Setting the token_type_ids to the registered buffer in constructor
|
89 |
-
# where it is all zeros, which usually occurs when it's auto-generated;
|
90 |
-
# registered buffer helps users when tracing the model without passing
|
91 |
-
# token_type_ids, solves issue #5664
|
92 |
-
if token_type_ids is None:
|
93 |
-
if hasattr(self, 'token_type_ids'):
|
94 |
-
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
95 |
-
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(
|
96 |
-
input_shape[0], seq_length
|
97 |
-
)
|
98 |
-
token_type_ids = buffered_token_type_ids_expanded # type: ignore
|
99 |
-
else:
|
100 |
-
token_type_ids = torch.zeros(
|
101 |
-
input_shape, # type: ignore
|
102 |
-
dtype=torch.long,
|
103 |
-
device=self.word_embeddings.device,
|
104 |
-
) # type: ignore # yapf: disable
|
105 |
-
|
106 |
-
if inputs_embeds is None:
|
107 |
-
inputs_embeds = self.word_embeddings(input_ids)
|
108 |
-
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
109 |
-
|
110 |
-
embeddings = inputs_embeds + token_type_embeddings
|
111 |
-
embeddings = self.LayerNorm(embeddings)
|
112 |
-
embeddings = self.dropout(embeddings)
|
113 |
-
return embeddings
|
114 |
-
|
115 |
-
|
116 |
-
class BertUnpadSelfAttention(nn.Module):
|
117 |
-
"""Performs multi-headed self attention on a batch of unpadded sequences.
|
118 |
-
|
119 |
-
If Triton is installed, this module uses Flash Attention to greatly improve throughput.
|
120 |
-
The Flash Attention implementation used in Mosaic BERT supports arbitrary attention biases (which
|
121 |
-
we use to implement ALiBi), but does not support attention dropout. If either Triton is not installed
|
122 |
-
or `config.attention_probs_dropout_prob > 0`, the implementation will default to a
|
123 |
-
math-equivalent pytorch version, which is much slower.
|
124 |
-
|
125 |
-
See `forward` method for additional detail.
|
126 |
-
"""
|
127 |
-
|
128 |
-
def __init__(self, config):
|
129 |
-
super().__init__()
|
130 |
-
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
|
131 |
-
config, 'embedding_size'
|
132 |
-
):
|
133 |
-
raise ValueError(
|
134 |
-
f'The hidden size ({config.hidden_size}) is not a multiple of the number of attention '
|
135 |
-
f'heads ({config.num_attention_heads})'
|
136 |
-
)
|
137 |
-
|
138 |
-
self.num_attention_heads = config.num_attention_heads
|
139 |
-
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
140 |
-
# TODO: self.all_head_size == config.hidden_size? Why not just use config.hidden_size?
|
141 |
-
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
142 |
-
|
143 |
-
self.Wqkv = nn.Linear(self.all_head_size, 3 * config.hidden_size)
|
144 |
-
|
145 |
-
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
146 |
-
|
147 |
-
def forward(
|
148 |
-
self,
|
149 |
-
hidden_states: torch.Tensor,
|
150 |
-
cu_seqlens: torch.Tensor,
|
151 |
-
max_seqlen_in_batch: int,
|
152 |
-
indices: torch.Tensor,
|
153 |
-
attn_mask: torch.Tensor,
|
154 |
-
bias: torch.Tensor,
|
155 |
-
) -> torch.Tensor:
|
156 |
-
"""Perform self-attention.
|
157 |
-
|
158 |
-
If dropout is zero, then we can use the Triton kernel, so we do that. However, if not, we send through a standard PyTorch
|
159 |
-
implementation of self-attention.
|
160 |
-
|
161 |
-
The arguments are unpadded, and our implementations of attention require padded arguments,
|
162 |
-
so we first call `pad_input`. Once we compute attention, we re-unpad our outputs for the other layers.
|
163 |
-
The pad/unpad operations add overhead, but not sending pad tokens through ffs saves compute.
|
164 |
-
It is possible to write an unpadded implementation of attention (in Triton and PyTorch), which we will eventually do.
|
165 |
-
|
166 |
-
Args:
|
167 |
-
hidden_states: (total_nnz, dim)
|
168 |
-
cu_seqlens: (batch + 1,)
|
169 |
-
max_seqlen_in_batch: int
|
170 |
-
indices: (total_nnz,)
|
171 |
-
attn_mask: (batch, max_seqlen_in_batch)
|
172 |
-
bias: (batch, heads, max_seqlen_in_batch, max_seqlen_in_batch)
|
173 |
-
|
174 |
-
Returns:
|
175 |
-
attention: (total_nnz, dim)
|
176 |
-
"""
|
177 |
-
qkv = self.Wqkv(hidden_states)
|
178 |
-
qkv = pad_input(
|
179 |
-
qkv, indices, cu_seqlens.shape[0] - 1, max_seqlen_in_batch
|
180 |
-
) # batch, max_seqlen_in_batch, thd
|
181 |
-
qkv = rearrange(
|
182 |
-
qkv, 'b s (t h d) -> b s t h d', t=3, h=self.num_attention_heads
|
183 |
-
)
|
184 |
-
# if we have nonzero attention dropout (e.g. during fine-tuning) or no Triton, compute attention in PyTorch
|
185 |
-
q = qkv[:, :, 0, :, :].permute(0, 2, 1, 3) # b h s d
|
186 |
-
k = qkv[:, :, 1, :, :].permute(0, 2, 3, 1) # b h d s
|
187 |
-
v = qkv[:, :, 2, :, :].permute(0, 2, 1, 3) # b h s d
|
188 |
-
attention_scores = torch.matmul(q, k) / math.sqrt(self.attention_head_size)
|
189 |
-
attention_scores = attention_scores + bias
|
190 |
-
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
191 |
-
attention_probs = self.dropout(attention_probs)
|
192 |
-
attention_probs = attention_probs.to(dtype=v.dtype)
|
193 |
-
attention = torch.matmul(attention_probs, v).permute(0, 2, 1, 3) # b s h
|
194 |
-
|
195 |
-
# attn_mask is 1 for attend and 0 for don't
|
196 |
-
attention = unpad_input_only(attention, torch.squeeze(attn_mask) == 1)
|
197 |
-
return rearrange(attention, 'nnz h d -> nnz (h d)')
|
198 |
-
|
199 |
-
|
200 |
-
# Copy of transformer's library BertSelfOutput that will not be caught by surgery methods looking for HF BERT modules.
|
201 |
-
class BertSelfOutput(nn.Module):
|
202 |
-
"""Computes the output of the attention layer.
|
203 |
-
|
204 |
-
This module is modeled after the Hugging Face BERT's
|
205 |
-
:class:`~transformers.model.bert.modeling_bert.BertSelfOutput`.
|
206 |
-
The implementation is identical. Rather than use the original module
|
207 |
-
directly, we re-implement it here so that Mosaic BERT's modules will not
|
208 |
-
be affected by any Composer surgery algorithm that modifies Hugging Face
|
209 |
-
BERT modules.
|
210 |
-
"""
|
211 |
-
|
212 |
-
def __init__(self, config):
|
213 |
-
super().__init__()
|
214 |
-
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
215 |
-
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
216 |
-
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
217 |
-
|
218 |
-
def forward(
|
219 |
-
self, hidden_states: torch.Tensor, input_tensor: torch.Tensor
|
220 |
-
) -> torch.Tensor:
|
221 |
-
hidden_states = self.dense(hidden_states)
|
222 |
-
hidden_states = self.dropout(hidden_states)
|
223 |
-
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
224 |
-
return hidden_states
|
225 |
-
|
226 |
-
|
227 |
-
class BertUnpadAttention(nn.Module):
|
228 |
-
"""Chains attention, Dropout, and LayerNorm for Mosaic BERT."""
|
229 |
-
|
230 |
-
def __init__(self, config):
|
231 |
-
super().__init__()
|
232 |
-
self.self = BertUnpadSelfAttention(config)
|
233 |
-
self.output = BertSelfOutput(config)
|
234 |
-
|
235 |
-
def forward(
|
236 |
-
self,
|
237 |
-
input_tensor: torch.Tensor,
|
238 |
-
cu_seqlens: torch.Tensor,
|
239 |
-
max_s: int,
|
240 |
-
subset_idx: Optional[torch.Tensor] = None,
|
241 |
-
indices: Optional[torch.Tensor] = None,
|
242 |
-
attn_mask: Optional[torch.Tensor] = None,
|
243 |
-
bias: Optional[torch.Tensor] = None,
|
244 |
-
) -> torch.Tensor:
|
245 |
-
"""Forward pass for scaled self-attention without padding.
|
246 |
-
|
247 |
-
Arguments:
|
248 |
-
input_tensor: (total_nnz, dim)
|
249 |
-
cu_seqlens: (batch + 1,)
|
250 |
-
max_s: int
|
251 |
-
subset_idx: () set of indices whose values we care about at the end of the layer
|
252 |
-
(e.g., the masked tokens, if this is the final layer).
|
253 |
-
indices: None or (total_nnz,)
|
254 |
-
attn_mask: None or (batch, max_seqlen_in_batch)
|
255 |
-
bias: None or (batch, heads, max_seqlen_in_batch, max_seqlen_in_batch)
|
256 |
-
"""
|
257 |
-
self_output = self.self(
|
258 |
-
input_tensor, cu_seqlens, max_s, indices, attn_mask, bias
|
259 |
-
)
|
260 |
-
if subset_idx is not None:
|
261 |
-
return self.output(
|
262 |
-
index_first_axis(self_output, subset_idx),
|
263 |
-
index_first_axis(input_tensor, subset_idx),
|
264 |
-
)
|
265 |
-
else:
|
266 |
-
return self.output(self_output, input_tensor)
|
267 |
-
|
268 |
-
|
269 |
-
class BertGatedLinearUnitMLP(nn.Module):
|
270 |
-
"""Applies the FFN at the end of each Mosaic BERT layer.
|
271 |
-
|
272 |
-
Compared to the default BERT architecture, this block replaces :class:`~transformers.model.bert.modeling_bert.BertIntermediate`
|
273 |
-
and :class:`~transformers.model.bert.modeling_bert.SelfOutput` with a single module that has similar functionality, but
|
274 |
-
introduces Gated Linear Units.
|
275 |
-
|
276 |
-
Note: Mosaic BERT adds parameters in order to implement Gated Linear Units. To keep parameter count consistent with that of a
|
277 |
-
standard Hugging Face BERT, scale down `config.intermediate_size` by 2/3. For example, a Mosaic BERT constructed with
|
278 |
-
`config.intermediate_size=2048` will have the same parameter footprint as its Hugging Face BERT counterpart constructed
|
279 |
-
with the `config.intermediate_size=3072`.
|
280 |
-
However, in most cases it will not be necessary to adjust `config.intermediate_size` since, despite the increased
|
281 |
-
parameter size, Mosaic BERT typically offers a net higher throughput than a Hugging Face BERT built from the same `config`.
|
282 |
-
"""
|
283 |
-
|
284 |
-
def __init__(self, config):
|
285 |
-
super().__init__()
|
286 |
-
self.config = config
|
287 |
-
self.gated_layers = nn.Linear(
|
288 |
-
config.hidden_size, config.intermediate_size * 2, bias=False
|
289 |
-
)
|
290 |
-
self.act = nn.GELU(approximate='none')
|
291 |
-
self.wo = nn.Linear(config.intermediate_size, config.hidden_size)
|
292 |
-
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
293 |
-
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
294 |
-
|
295 |
-
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
296 |
-
"""Compute new hidden states from current hidden states.
|
297 |
-
|
298 |
-
Args:
|
299 |
-
hidden_states (torch.Tensor): The (unpadded) hidden states from
|
300 |
-
the attention layer [nnz, dim].
|
301 |
-
"""
|
302 |
-
residual_connection = hidden_states
|
303 |
-
# compute the activation
|
304 |
-
hidden_states = self.gated_layers(hidden_states)
|
305 |
-
gated = hidden_states[:, : self.config.intermediate_size]
|
306 |
-
non_gated = hidden_states[:, self.config.intermediate_size :]
|
307 |
-
hidden_states = self.act(gated) * non_gated
|
308 |
-
hidden_states = self.dropout(hidden_states)
|
309 |
-
# multiply by the second matrix
|
310 |
-
hidden_states = self.wo(hidden_states)
|
311 |
-
# add the residual connection and post-LN
|
312 |
-
hidden_states = self.layernorm(hidden_states + residual_connection)
|
313 |
-
return hidden_states
|
314 |
-
|
315 |
-
|
316 |
-
class BertLayer(nn.Module):
|
317 |
-
"""Composes the Mosaic BERT attention and FFN blocks into a single layer."""
|
318 |
-
|
319 |
-
def __init__(self, config: JBertConfig):
|
320 |
-
super().__init__()
|
321 |
-
self.attention = BertUnpadAttention(config)
|
322 |
-
self.mlp = BertGatedLinearUnitMLP(config)
|
323 |
-
|
324 |
-
def forward(
|
325 |
-
self,
|
326 |
-
hidden_states: torch.Tensor,
|
327 |
-
cu_seqlens: torch.Tensor,
|
328 |
-
seqlen: int,
|
329 |
-
subset_idx: Optional[torch.Tensor] = None,
|
330 |
-
indices: Optional[torch.Tensor] = None,
|
331 |
-
attn_mask: Optional[torch.Tensor] = None,
|
332 |
-
bias: Optional[torch.Tensor] = None,
|
333 |
-
) -> torch.Tensor:
|
334 |
-
"""Forward pass for a BERT layer, including both attention and MLP.
|
335 |
-
|
336 |
-
Args:
|
337 |
-
hidden_states: (total_nnz, dim)
|
338 |
-
cu_seqlens: (batch + 1,)
|
339 |
-
seqlen: int
|
340 |
-
subset_idx: () set of indices whose values we care about at the end of the layer
|
341 |
-
(e.g., the masked tokens, if this is the final layer).
|
342 |
-
indices: None or (total_nnz,)
|
343 |
-
attn_mask: None or (batch, max_seqlen_in_batch)
|
344 |
-
bias: None or (batch, heads, max_seqlen_in_batch, max_seqlen_in_batch)
|
345 |
-
"""
|
346 |
-
attention_output = self.attention(
|
347 |
-
hidden_states, cu_seqlens, seqlen, subset_idx, indices, attn_mask, bias
|
348 |
-
)
|
349 |
-
layer_output = self.mlp(attention_output)
|
350 |
-
return layer_output
|
351 |
-
|
352 |
-
|
353 |
-
class JBertEncoder(nn.Module):
|
354 |
-
"""A stack of BERT layers providing the backbone.
|
355 |
-
|
356 |
-
This module is modeled after the Hugging Face BERT's :class:`~transformers.model.bert.modeling_bert.BertEncoder`,
|
357 |
-
but with substantial modifications to implement unpadding and ALiBi.
|
358 |
-
|
359 |
-
Compared to the analogous Hugging Face BERT module, this module handles unpadding to reduce unnecessary computation
|
360 |
-
at padded tokens, and pre-computes attention biases to implement ALiBi.
|
361 |
-
"""
|
362 |
-
|
363 |
-
def __init__(self, config: JBertConfig):
|
364 |
-
super().__init__()
|
365 |
-
self.layer = nn.ModuleList(
|
366 |
-
[BertLayer(config) for _ in range(config.num_hidden_layers)]
|
367 |
-
)
|
368 |
-
|
369 |
-
self.num_attention_heads = config.num_attention_heads
|
370 |
-
|
371 |
-
# The alibi mask will be dynamically expanded if it is too small for
|
372 |
-
# the input the model receives. But it generally helps to initialize it
|
373 |
-
# to a reasonably large size to help pre-allocate CUDA memory.
|
374 |
-
# The default `model_max_length` is 8192.
|
375 |
-
self._current_alibi_size = int(config.model_max_length)
|
376 |
-
self.alibi = torch.zeros(
|
377 |
-
(
|
378 |
-
1,
|
379 |
-
self.num_attention_heads,
|
380 |
-
self._current_alibi_size,
|
381 |
-
self._current_alibi_size,
|
382 |
-
)
|
383 |
-
)
|
384 |
-
self.rebuild_alibi_tensor(size=config.model_max_length)
|
385 |
-
|
386 |
-
def rebuild_alibi_tensor(
|
387 |
-
self, size: int, device: Optional[Union[torch.device, str]] = None
|
388 |
-
):
|
389 |
-
# Alibi
|
390 |
-
# Following https://github.com/ofirpress/attention_with_linear_biases/issues/5 (Implementation 1)
|
391 |
-
# In the causal case, you can exploit the fact that softmax is invariant to a uniform translation
|
392 |
-
# of the logits, which makes the math work out *after* applying causal masking. If no causal masking
|
393 |
-
# will be applied, it is necessary to construct the diagonal mask.
|
394 |
-
n_heads = self.num_attention_heads
|
395 |
-
|
396 |
-
def _get_alibi_head_slopes(n_heads: int) -> List[float]:
|
397 |
-
def get_slopes_power_of_2(n_heads: int) -> List[float]:
|
398 |
-
start = 2 ** (-(2 ** -(math.log2(n_heads) - 3)))
|
399 |
-
ratio = start
|
400 |
-
return [start * ratio**i for i in range(n_heads)]
|
401 |
-
|
402 |
-
# In the paper, they only train models that have 2^a heads for some a. This function
|
403 |
-
# has some good properties that only occur when the input is a power of 2. To
|
404 |
-
# maintain that even when the number of heads is not a power of 2, we use a
|
405 |
-
# workaround.
|
406 |
-
if math.log2(n_heads).is_integer():
|
407 |
-
return get_slopes_power_of_2(n_heads)
|
408 |
-
|
409 |
-
closest_power_of_2 = 2 ** math.floor(math.log2(n_heads))
|
410 |
-
slopes_a = get_slopes_power_of_2(closest_power_of_2)
|
411 |
-
slopes_b = _get_alibi_head_slopes(2 * closest_power_of_2)
|
412 |
-
slopes_b = slopes_b[0::2][: n_heads - closest_power_of_2]
|
413 |
-
return slopes_a + slopes_b
|
414 |
-
|
415 |
-
context_position = torch.arange(size, device=device)[:, None]
|
416 |
-
memory_position = torch.arange(size, device=device)[None, :]
|
417 |
-
relative_position = torch.abs(memory_position - context_position)
|
418 |
-
# [n_heads, max_token_length, max_token_length]
|
419 |
-
relative_position = relative_position.unsqueeze(0).expand(n_heads, -1, -1)
|
420 |
-
slopes = torch.Tensor(_get_alibi_head_slopes(n_heads)).to(device)
|
421 |
-
alibi = slopes.unsqueeze(1).unsqueeze(1) * -relative_position
|
422 |
-
# [1, n_heads, max_token_length, max_token_length]
|
423 |
-
alibi = alibi.unsqueeze(0)
|
424 |
-
assert alibi.shape == torch.Size([1, n_heads, size, size])
|
425 |
-
|
426 |
-
self._current_alibi_size = size
|
427 |
-
self.alibi = alibi
|
428 |
-
|
429 |
-
def forward(
|
430 |
-
self,
|
431 |
-
hidden_states: torch.Tensor,
|
432 |
-
attention_mask: Optional[torch.FloatTensor] = None,
|
433 |
-
head_mask: Optional[torch.FloatTensor] = None,
|
434 |
-
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
435 |
-
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
436 |
-
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
437 |
-
use_cache: Optional[bool] = None,
|
438 |
-
output_attentions: Optional[bool] = False,
|
439 |
-
output_hidden_states: Optional[bool] = False,
|
440 |
-
return_dict: Optional[bool] = True,
|
441 |
-
) -> List[torch.Tensor]:
|
442 |
-
all_hidden_states = [] if output_hidden_states else None
|
443 |
-
|
444 |
-
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
445 |
-
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
446 |
-
|
447 |
-
attention_mask_bool = attention_mask.bool()
|
448 |
-
batch, seqlen = hidden_states.shape[:2]
|
449 |
-
# Unpad inputs and mask. It will remove tokens that are padded.
|
450 |
-
# Assume ntokens is total number of tokens (padded and non-padded)
|
451 |
-
# and ntokens_unpad is total number of non-padded tokens.
|
452 |
-
# Then unpadding performs the following compression of the inputs:
|
453 |
-
# hidden_states[ntokens,hidden] -> hidden_states[ntokens_unpad,hidden]
|
454 |
-
hidden_states, indices, cu_seqlens, _ = unpad_input(
|
455 |
-
hidden_states, attention_mask_bool
|
456 |
-
)
|
457 |
-
|
458 |
-
# Add alibi matrix to extended_attention_mask
|
459 |
-
if self._current_alibi_size < seqlen:
|
460 |
-
# Rebuild the alibi tensor when needed
|
461 |
-
warnings.warn(
|
462 |
-
f'Increasing alibi size from {self._current_alibi_size} to {seqlen}'
|
463 |
-
)
|
464 |
-
self.rebuild_alibi_tensor(size=seqlen, device=hidden_states.device)
|
465 |
-
elif self.alibi.device != hidden_states.device:
|
466 |
-
# Device catch-up
|
467 |
-
self.alibi = self.alibi.to(hidden_states.device)
|
468 |
-
alibi_bias = self.alibi[:, :, :seqlen, :seqlen]
|
469 |
-
attn_bias = extended_attention_mask[:, :, :seqlen, :seqlen]
|
470 |
-
alibi_attn_mask = attn_bias + alibi_bias
|
471 |
-
|
472 |
-
for layer_module in self.layer:
|
473 |
-
if output_hidden_states:
|
474 |
-
all_hidden_states.append(rearrange(hidden_states, '(b n) d -> b n d', b=batch))
|
475 |
-
hidden_states = layer_module(
|
476 |
-
hidden_states,
|
477 |
-
cu_seqlens,
|
478 |
-
seqlen,
|
479 |
-
None,
|
480 |
-
indices,
|
481 |
-
attn_mask=attention_mask,
|
482 |
-
bias=alibi_attn_mask,
|
483 |
-
)
|
484 |
-
# Pad inputs and mask. It will insert back zero-padded tokens.
|
485 |
-
# Assume ntokens is total number of tokens (padded and non-padded)
|
486 |
-
# and ntokens_unpad is total number of non-padded tokens.
|
487 |
-
# Then padding performs the following de-compression:
|
488 |
-
# hidden_states[ntokens_unpad,hidden] -> hidden_states[ntokens,hidden]
|
489 |
-
hidden_states = pad_input(hidden_states, indices, batch, seqlen)
|
490 |
-
|
491 |
-
if output_hidden_states:
|
492 |
-
all_hidden_states.append(hidden_states)
|
493 |
-
|
494 |
-
if not return_dict:
|
495 |
-
return tuple(
|
496 |
-
v for v in [hidden_states, all_hidden_states] if v is not None
|
497 |
-
)
|
498 |
-
return BaseModelOutputWithPastAndCrossAttentions(
|
499 |
-
last_hidden_state=hidden_states,
|
500 |
-
past_key_values=None,
|
501 |
-
hidden_states=all_hidden_states,
|
502 |
-
attentions=None,
|
503 |
-
cross_attentions=None,
|
504 |
-
)
|
505 |
-
|
506 |
-
|
507 |
-
class JBertPooler(nn.Module):
|
508 |
-
def __init__(self, config):
|
509 |
-
super().__init__()
|
510 |
-
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
511 |
-
self.activation = nn.Tanh()
|
512 |
-
|
513 |
-
def forward(
|
514 |
-
self, hidden_states: torch.Tensor, pool: Optional[bool] = True
|
515 |
-
) -> torch.Tensor:
|
516 |
-
# We "pool" the model by simply taking the hidden state corresponding
|
517 |
-
# to the first token.
|
518 |
-
first_token_tensor = hidden_states[:, 0] if pool else hidden_states
|
519 |
-
pooled_output = self.dense(first_token_tensor)
|
520 |
-
pooled_output = self.activation(pooled_output)
|
521 |
-
return pooled_output
|
522 |
-
|
523 |
-
|
524 |
-
class BertPredictionHeadTransform(nn.Module):
|
525 |
-
def __init__(self, config):
|
526 |
-
super().__init__()
|
527 |
-
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
528 |
-
if isinstance(config.hidden_act, str):
|
529 |
-
self.transform_act_fn = ACT2FN[config.hidden_act]
|
530 |
-
else:
|
531 |
-
self.transform_act_fn = config.hidden_act
|
532 |
-
self.LayerNorm = torch.nn.LayerNorm(config.hidden_size, eps=1e-12)
|
533 |
-
|
534 |
-
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
535 |
-
hidden_states = self.dense(hidden_states)
|
536 |
-
hidden_states = self.transform_act_fn(hidden_states)
|
537 |
-
hidden_states = self.LayerNorm(hidden_states)
|
538 |
-
return hidden_states
|
539 |
-
|
540 |
-
|
541 |
-
class JBertModel(BertPreTrainedModel):
|
542 |
-
"""Overall BERT model.
|
543 |
-
|
544 |
-
Args:
|
545 |
-
config: a JBertConfig class instance with the configuration to build a new model
|
546 |
-
|
547 |
-
Inputs:
|
548 |
-
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
|
549 |
-
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
|
550 |
-
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
|
551 |
-
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
|
552 |
-
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
|
553 |
-
a `sentence B` token (see BERT paper for more details).
|
554 |
-
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
|
555 |
-
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
|
556 |
-
input sequence length in the current batch. It's the mask that we typically use for attention when
|
557 |
-
a batch has varying length sentences.
|
558 |
-
`output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.
|
559 |
-
|
560 |
-
Outputs: Tuple of (encoded_layers, pooled_output)
|
561 |
-
`encoded_layers`: controlled by `output_all_encoded_layers` argument:
|
562 |
-
- `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
|
563 |
-
of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each
|
564 |
-
encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
|
565 |
-
- `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
|
566 |
-
to the last attention block of shape [batch_size, sequence_length, hidden_size],
|
567 |
-
`pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
|
568 |
-
classifier pretrained on top of the hidden state associated to the first character of the
|
569 |
-
input (`CLS`) to train on the Next-Sentence task (see BERT's paper).
|
570 |
-
|
571 |
-
Example usage:
|
572 |
-
```python
|
573 |
-
# Already been converted into WordPiece token ids
|
574 |
-
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
|
575 |
-
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
|
576 |
-
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
|
577 |
-
config = modeling.JBertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
|
578 |
-
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
|
579 |
-
model = JBertModel(config=config)
|
580 |
-
all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
|
581 |
-
```
|
582 |
-
"""
|
583 |
-
|
584 |
-
config_class = JBertConfig
|
585 |
-
|
586 |
-
def __init__(self, config, add_pooling_layer=True):
|
587 |
-
super().__init__(config)
|
588 |
-
self.embeddings = JBertEmbeddings(config)
|
589 |
-
self.encoder = JBertEncoder(config)
|
590 |
-
self.pooler = JBertPooler(config) if add_pooling_layer else None
|
591 |
-
self.post_init()
|
592 |
-
|
593 |
-
def get_input_embeddings(self):
|
594 |
-
return self.embeddings.word_embeddings
|
595 |
-
|
596 |
-
def set_input_embeddings(self, value):
|
597 |
-
self.embeddings.word_embeddings = value
|
598 |
-
|
599 |
-
def forward(
|
600 |
-
self,
|
601 |
-
input_ids: torch.Tensor,
|
602 |
-
attention_mask: Optional[torch.Tensor] = None,
|
603 |
-
token_type_ids: Optional[torch.Tensor] = None,
|
604 |
-
position_ids: Optional[torch.Tensor] = None,
|
605 |
-
head_mask: Optional[torch.Tensor] = None,
|
606 |
-
inputs_embeds: Optional[torch.Tensor] = None,
|
607 |
-
encoder_hidden_states: Optional[torch.Tensor] = None,
|
608 |
-
encoder_attention_mask: Optional[torch.Tensor] = None,
|
609 |
-
output_attentions: Optional[bool] = False,
|
610 |
-
output_hidden_states: Optional[bool] = False,
|
611 |
-
return_dict: Optional[bool] = True,
|
612 |
-
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
613 |
-
if attention_mask is None:
|
614 |
-
attention_mask = torch.ones_like(input_ids)
|
615 |
-
if token_type_ids is None:
|
616 |
-
token_type_ids = torch.zeros_like(input_ids)
|
617 |
-
|
618 |
-
embedding_output = self.embeddings(input_ids, token_type_ids, position_ids)
|
619 |
-
|
620 |
-
encoder_outputs: BaseModelOutputWithPastAndCrossAttentions = self.encoder(
|
621 |
-
hidden_states=embedding_output,
|
622 |
-
attention_mask=attention_mask,
|
623 |
-
output_hidden_states=output_hidden_states,
|
624 |
-
return_dict=return_dict,
|
625 |
-
)
|
626 |
-
|
627 |
-
sequence_output = encoder_outputs[0]
|
628 |
-
pooled_output = (
|
629 |
-
self.pooler(sequence_output) if self.pooler is not None else None
|
630 |
-
)
|
631 |
-
|
632 |
-
if not return_dict:
|
633 |
-
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
634 |
-
|
635 |
-
#return encoder_outputs, None
|
636 |
-
return BaseModelOutputWithPoolingAndCrossAttentions(
|
637 |
-
last_hidden_state=sequence_output,
|
638 |
-
pooler_output=pooled_output,
|
639 |
-
past_key_values=encoder_outputs.past_key_values,
|
640 |
-
hidden_states=encoder_outputs.hidden_states,
|
641 |
-
attentions=encoder_outputs.attentions,
|
642 |
-
cross_attentions=encoder_outputs.cross_attentions,
|
643 |
-
)
|
644 |
-
|
645 |
-
|
646 |
-
###################
|
647 |
-
# Bert Heads
|
648 |
-
###################
|
649 |
-
class BertLMPredictionHead(nn.Module):
|
650 |
-
def __init__(self, config, bert_model_embedding_weights):
|
651 |
-
super().__init__()
|
652 |
-
self.transform = BertPredictionHeadTransform(config)
|
653 |
-
# The output weights are the same as the input embeddings, but there is
|
654 |
-
# an output-only bias for each token.
|
655 |
-
self.decoder = nn.Linear(
|
656 |
-
bert_model_embedding_weights.size(1), bert_model_embedding_weights.size(0)
|
657 |
-
)
|
658 |
-
self.decoder.weight = bert_model_embedding_weights
|
659 |
-
|
660 |
-
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
661 |
-
hidden_states = self.transform(hidden_states)
|
662 |
-
hidden_states = self.decoder(hidden_states)
|
663 |
-
return hidden_states
|
664 |
-
|
665 |
-
|
666 |
-
class BertOnlyMLMHead(nn.Module):
|
667 |
-
def __init__(self, config, bert_model_embedding_weights):
|
668 |
-
super().__init__()
|
669 |
-
self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)
|
670 |
-
|
671 |
-
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
|
672 |
-
prediction_scores = self.predictions(sequence_output)
|
673 |
-
return prediction_scores
|
674 |
-
|
675 |
-
|
676 |
-
class BertOnlyNSPHead(nn.Module):
|
677 |
-
def __init__(self, config):
|
678 |
-
super().__init__()
|
679 |
-
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
680 |
-
|
681 |
-
def forward(self, pooled_output: torch.Tensor) -> torch.Tensor:
|
682 |
-
seq_relationship_score = self.seq_relationship(pooled_output)
|
683 |
-
return seq_relationship_score
|
684 |
-
|
685 |
-
|
686 |
-
#####################
|
687 |
-
# Various Bert models
|
688 |
-
#####################
|
689 |
-
class JBertForMaskedLM(BertPreTrainedModel):
|
690 |
-
config_class = JBertConfig
|
691 |
-
|
692 |
-
def __init__(self, config):
|
693 |
-
super().__init__(config)
|
694 |
-
|
695 |
-
if config.is_decoder:
|
696 |
-
warnings.warn(
|
697 |
-
'If you want to use `JBertForMaskedLM` make sure `config.is_decoder=False` for '
|
698 |
-
'bi-directional self-attention.'
|
699 |
-
)
|
700 |
-
|
701 |
-
self.bert = JBertModel(config, add_pooling_layer=False)
|
702 |
-
self.cls = BertOnlyMLMHead(config, self.bert.embeddings.word_embeddings.weight)
|
703 |
-
|
704 |
-
# Initialize weights and apply final processing
|
705 |
-
self.post_init()
|
706 |
-
|
707 |
-
def get_output_embeddings(self):
|
708 |
-
return self.cls.predictions.decoder
|
709 |
-
|
710 |
-
def set_output_embeddings(self, new_embeddings):
|
711 |
-
self.cls.predictions.decoder = new_embeddings
|
712 |
-
|
713 |
-
def forward(
|
714 |
-
self,
|
715 |
-
input_ids: Optional[torch.Tensor] = None,
|
716 |
-
attention_mask: Optional[torch.Tensor] = None,
|
717 |
-
token_type_ids: Optional[torch.Tensor] = None,
|
718 |
-
position_ids: Optional[torch.Tensor] = None,
|
719 |
-
head_mask: Optional[torch.Tensor] = None,
|
720 |
-
inputs_embeds: Optional[torch.Tensor] = None,
|
721 |
-
encoder_hidden_states: Optional[torch.Tensor] = None,
|
722 |
-
encoder_attention_mask: Optional[torch.Tensor] = None,
|
723 |
-
labels: Optional[torch.Tensor] = None,
|
724 |
-
output_attentions: Optional[bool] = None,
|
725 |
-
output_hidden_states: Optional[bool] = None,
|
726 |
-
return_dict: Optional[bool] = None,
|
727 |
-
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
728 |
-
# labels should be a `torch.LongTensor` of shape
|
729 |
-
# `(batch_size, sequence_length)`. These are used for computing the
|
730 |
-
# masked language modeling loss.
|
731 |
-
#
|
732 |
-
# Indices should be in `[-100, 0, ..., config.vocab_size]` (see
|
733 |
-
# `input_ids` docstring) Tokens with indices set to `-100` are ignored
|
734 |
-
# (masked), the loss is only computed for the tokens with labels in `[0,
|
735 |
-
# ..., config.vocab_size]`
|
736 |
-
#
|
737 |
-
# Prediction scores are only computed for masked tokens and the (bs,
|
738 |
-
# seqlen) dimensions are flattened
|
739 |
-
if (input_ids is not None) == (inputs_embeds is not None):
|
740 |
-
raise ValueError('Must specify either input_ids or input_embeds!')
|
741 |
-
|
742 |
-
return_dict = (
|
743 |
-
return_dict if return_dict is not None else self.config.use_return_dict
|
744 |
-
)
|
745 |
-
|
746 |
-
outputs = self.bert(
|
747 |
-
input_ids,
|
748 |
-
attention_mask=attention_mask,
|
749 |
-
token_type_ids=token_type_ids,
|
750 |
-
position_ids=position_ids,
|
751 |
-
head_mask=head_mask,
|
752 |
-
inputs_embeds=inputs_embeds,
|
753 |
-
encoder_hidden_states=encoder_hidden_states,
|
754 |
-
encoder_attention_mask=encoder_attention_mask,
|
755 |
-
output_attentions=output_attentions,
|
756 |
-
output_hidden_states=output_hidden_states,
|
757 |
-
return_dict=return_dict,
|
758 |
-
)
|
759 |
-
|
760 |
-
sequence_output = outputs[0]
|
761 |
-
prediction_scores = self.cls(sequence_output)
|
762 |
-
|
763 |
-
loss = None
|
764 |
-
if labels is not None:
|
765 |
-
# Compute loss
|
766 |
-
loss_fct = nn.CrossEntropyLoss()
|
767 |
-
loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
768 |
-
|
769 |
-
if not return_dict:
|
770 |
-
output = (prediction_scores,) + outputs[2:]
|
771 |
-
return ((loss,) + output) if loss is not None else output
|
772 |
-
|
773 |
-
return MaskedLMOutput(
|
774 |
-
loss=loss,
|
775 |
-
logits=prediction_scores,
|
776 |
-
hidden_states=outputs.hidden_states,
|
777 |
-
attentions=outputs.attentions,
|
778 |
-
)
|
779 |
-
|
780 |
-
def prepare_inputs_for_generation(
|
781 |
-
self, input_ids: torch.Tensor, attention_mask: torch.Tensor, **model_kwargs
|
782 |
-
):
|
783 |
-
input_shape = input_ids.shape
|
784 |
-
effective_batch_size = input_shape[0]
|
785 |
-
|
786 |
-
# add a dummy token
|
787 |
-
if self.config.pad_token_id is None:
|
788 |
-
raise ValueError('The PAD token should be defined for generation')
|
789 |
-
|
790 |
-
attention_mask = torch.cat(
|
791 |
-
[attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))],
|
792 |
-
dim=-1,
|
793 |
-
)
|
794 |
-
dummy_token = torch.full(
|
795 |
-
(effective_batch_size, 1),
|
796 |
-
self.config.pad_token_id,
|
797 |
-
dtype=torch.long,
|
798 |
-
device=input_ids.device,
|
799 |
-
)
|
800 |
-
input_ids = torch.cat([input_ids, dummy_token], dim=1)
|
801 |
-
|
802 |
-
return {'input_ids': input_ids, 'attention_mask': attention_mask}
|
803 |
-
|
804 |
-
|
805 |
-
|
806 |
-
class JBertForSequenceClassification(BertPreTrainedModel):
|
807 |
-
"""Bert Model transformer with a sequence classification/regression head.
|
808 |
-
|
809 |
-
This head is just a linear layer on top of the pooled output. Used for,
|
810 |
-
e.g., GLUE tasks.
|
811 |
-
"""
|
812 |
-
|
813 |
-
config_class = JBertConfig
|
814 |
-
|
815 |
-
def __init__(self, config):
|
816 |
-
super().__init__(config)
|
817 |
-
self.num_labels = config.num_labels
|
818 |
-
self.config = config
|
819 |
-
|
820 |
-
self.bert = JBertModel(config)
|
821 |
-
classifier_dropout = (
|
822 |
-
config.classifier_dropout
|
823 |
-
if config.classifier_dropout is not None
|
824 |
-
else config.hidden_dropout_prob
|
825 |
-
)
|
826 |
-
self.dropout = nn.Dropout(classifier_dropout)
|
827 |
-
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
828 |
-
|
829 |
-
# Initialize weights and apply final processing
|
830 |
-
self.post_init()
|
831 |
-
|
832 |
-
def forward(
|
833 |
-
self,
|
834 |
-
input_ids: Optional[torch.Tensor] = None,
|
835 |
-
attention_mask: Optional[torch.Tensor] = None,
|
836 |
-
token_type_ids: Optional[torch.Tensor] = None,
|
837 |
-
position_ids: Optional[torch.Tensor] = None,
|
838 |
-
head_mask: Optional[torch.Tensor] = None,
|
839 |
-
inputs_embeds: Optional[torch.Tensor] = None,
|
840 |
-
labels: Optional[torch.Tensor] = None,
|
841 |
-
output_attentions: Optional[bool] = None,
|
842 |
-
output_hidden_states: Optional[bool] = None,
|
843 |
-
return_dict: Optional[bool] = None,
|
844 |
-
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
845 |
-
# labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
846 |
-
# Labels for computing the sequence classification/regression loss.
|
847 |
-
# Indices should be in `[0, ..., config.num_labels - 1]`.
|
848 |
-
# If `config.num_labels == 1` a regression loss is computed
|
849 |
-
# (mean-square loss). If `config.num_labels > 1` a classification loss
|
850 |
-
# is computed (cross-entropy).
|
851 |
-
|
852 |
-
return_dict = (
|
853 |
-
return_dict if return_dict is not None else self.config.use_return_dict
|
854 |
-
)
|
855 |
-
|
856 |
-
outputs = self.bert(
|
857 |
-
input_ids,
|
858 |
-
attention_mask=attention_mask,
|
859 |
-
token_type_ids=token_type_ids,
|
860 |
-
position_ids=position_ids,
|
861 |
-
head_mask=head_mask,
|
862 |
-
inputs_embeds=inputs_embeds,
|
863 |
-
output_attentions=output_attentions,
|
864 |
-
output_hidden_states=output_hidden_states,
|
865 |
-
return_dict=return_dict,
|
866 |
-
)
|
867 |
-
|
868 |
-
pooled_output = outputs[1]
|
869 |
-
|
870 |
-
pooled_output = self.dropout(pooled_output)
|
871 |
-
logits = self.classifier(pooled_output)
|
872 |
-
|
873 |
-
loss = None
|
874 |
-
if labels is not None:
|
875 |
-
# Compute loss
|
876 |
-
if self.config.problem_type is None:
|
877 |
-
if self.num_labels == 1:
|
878 |
-
self.config.problem_type = 'regression'
|
879 |
-
elif self.num_labels > 1 and (
|
880 |
-
labels.dtype == torch.long or labels.dtype == torch.int
|
881 |
-
):
|
882 |
-
self.config.problem_type = 'single_label_classification'
|
883 |
-
else:
|
884 |
-
self.config.problem_type = 'multi_label_classification'
|
885 |
-
|
886 |
-
if self.config.problem_type == 'regression':
|
887 |
-
loss_fct = nn.MSELoss()
|
888 |
-
if self.num_labels == 1:
|
889 |
-
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
890 |
-
else:
|
891 |
-
loss = loss_fct(logits, labels)
|
892 |
-
elif self.config.problem_type == 'single_label_classification':
|
893 |
-
loss_fct = nn.CrossEntropyLoss()
|
894 |
-
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
895 |
-
elif self.config.problem_type == 'multi_label_classification':
|
896 |
-
loss_fct = nn.BCEWithLogitsLoss()
|
897 |
-
loss = loss_fct(logits, labels)
|
898 |
-
|
899 |
-
if not return_dict:
|
900 |
-
output = (logits,) + outputs[2:]
|
901 |
-
return ((loss,) + output) if loss is not None else output
|
902 |
-
|
903 |
-
return SequenceClassifierOutput(
|
904 |
-
loss=loss,
|
905 |
-
logits=logits,
|
906 |
-
hidden_states=None,
|
907 |
-
attentions=None,
|
908 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|