# -------------------------------------------------------- # Adapted from EVA CLIP # https://github.com/baaivision/EVA/tree/master/EVA-CLIP/rei/eva_clip # -------------------------------------------------------- from math import pi import torch from einops import rearrange, repeat from torch import nn def broadcast(tensors, dim=-1): num_tensors = len(tensors) shape_lens = set(list(map(lambda t: len(t.shape), tensors))) assert len(shape_lens) == 1, 'tensors must all have the same number of dimensions' shape_len = list(shape_lens)[0] dim = (dim + shape_len) if dim < 0 else dim dims = list(zip(*map(lambda t: list(t.shape), tensors))) expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim] assert all( [*map(lambda t: len(set(t[1])) <= 2, expandable_dims)] ), 'invalid dimensions for broadcastable concatentation' max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims)) expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims)) expanded_dims.insert(dim, (dim, dims[dim])) expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims))) tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes))) return torch.cat(tensors, dim=dim) def rotate_half(x): x = rearrange(x, '... (d r) -> ... d r', r=2) x1, x2 = x.unbind(dim=-1) x = torch.stack((-x2, x1), dim=-1) return rearrange(x, '... d r -> ... (d r)') class VisionRotaryEmbedding(nn.Module): def __init__( self, dim, pt_seq_len, ft_seq_len=None, custom_freqs=None, freqs_for='lang', theta=10000, max_freq=10, num_freqs=1, ): super().__init__() if custom_freqs: freqs = custom_freqs elif freqs_for == 'lang': freqs = 1.0 / ( theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim) ) elif freqs_for == 'pixel': freqs = torch.linspace(1.0, max_freq / 2, dim // 2) * pi elif freqs_for == 'constant': freqs = torch.ones(num_freqs).float() else: raise ValueError(f'unknown modality {freqs_for}') if ft_seq_len is None: ft_seq_len = pt_seq_len t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len freqs_h = torch.einsum('..., f -> ... f', t, freqs) freqs_h = repeat(freqs_h, '... n -> ... (n r)', r=2) freqs_w = torch.einsum('..., f -> ... f', t, freqs) freqs_w = repeat(freqs_w, '... n -> ... (n r)', r=2) freqs = broadcast((freqs_h[:, None, :], freqs_w[None, :, :]), dim=-1) self.register_buffer('freqs_cos', freqs.cos(), persistent=False) self.register_buffer('freqs_sin', freqs.sin(), persistent=False) def forward(self, t, start_index=0): rot_dim = self.freqs_cos.shape[-1] end_index = start_index + rot_dim assert rot_dim <= t.shape[-1], ( f'feature dimension {t.shape[-1]} is not of sufficient size to rotate in ' f'all the positions {rot_dim}' ) t_left, t, t_right = ( t[..., :start_index], t[..., start_index:end_index], t[..., end_index:], ) t = (t * self.freqs_cos) + (rotate_half(t) * self.freqs_sin) return torch.cat((t_left, t, t_right), dim=-1) class VisionRotaryEmbeddingFast(nn.Module): def __init__( self, dim, pt_seq_len, ft_seq_len=None, custom_freqs=None, freqs_for='lang', theta=10000, max_freq=10, num_freqs=1, patch_dropout=0.0, ): super().__init__() if custom_freqs: freqs = custom_freqs elif freqs_for == 'lang': freqs = 1.0 / ( theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim) ) elif freqs_for == 'pixel': freqs = torch.linspace(1.0, max_freq / 2, dim // 2) * pi elif freqs_for == 'constant': freqs = torch.ones(num_freqs).float() else: raise ValueError(f'unknown modality {freqs_for}') if ft_seq_len is None: ft_seq_len = pt_seq_len t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len freqs = torch.einsum('..., f -> ... f', t, freqs) freqs = repeat(freqs, '... n -> ... (n r)', r=2) freqs = broadcast((freqs[:, None, :], freqs[None, :, :]), dim=-1) freqs_cos = freqs.cos().view(-1, freqs.shape[-1]) freqs_sin = freqs.sin().view(-1, freqs.shape[-1]) self.patch_dropout = patch_dropout self.register_buffer('freqs_cos', freqs_cos, persistent=False) self.register_buffer('freqs_sin', freqs_sin, persistent=False) def forward(self, t, patch_indices_keep=None): if patch_indices_keep is not None: batch = t.size()[0] batch_indices = torch.arange(batch) batch_indices = batch_indices[..., None] freqs_cos = repeat( self.freqs_cos, 'i j -> n i m j', n=t.shape[0], m=t.shape[1] ) freqs_sin = repeat( self.freqs_sin, 'i j -> n i m j', n=t.shape[0], m=t.shape[1] ) freqs_cos = freqs_cos[batch_indices, patch_indices_keep] freqs_cos = rearrange(freqs_cos, 'n i m j -> n m i j') freqs_sin = freqs_sin[batch_indices, patch_indices_keep] freqs_sin = rearrange(freqs_sin, 'n i m j -> n m i j') return t * freqs_cos + rotate_half(t) * freqs_sin return t * self.freqs_cos + rotate_half(t) * self.freqs_sin