Update hf_model.py
Browse files- hf_model.py +0 -128
hf_model.py
CHANGED
@@ -295,131 +295,3 @@ class HFTextEncoder(nn.Module):
|
|
295 |
def init_parameters(self):
|
296 |
pass
|
297 |
|
298 |
-
|
299 |
-
"""
|
300 |
-
HF vision model
|
301 |
-
"""
|
302 |
-
|
303 |
-
|
304 |
-
class HFVisionEncoder(nn.Module):
|
305 |
-
output_tokens: torch.jit.Final[bool]
|
306 |
-
|
307 |
-
def __init__(
|
308 |
-
self,
|
309 |
-
model_name_or_path: str,
|
310 |
-
image_size: int,
|
311 |
-
output_dim: int,
|
312 |
-
config: PretrainedConfig = None,
|
313 |
-
pool_type: str = 'tok',
|
314 |
-
proj_type: Optional[str] = None,
|
315 |
-
proj_bias: bool = False,
|
316 |
-
attn_drop: float = 0.0,
|
317 |
-
hidden_drop: float = 0.0,
|
318 |
-
drop_path: Optional[float] = None,
|
319 |
-
pretrained: bool = True,
|
320 |
-
output_tokens: bool = False,
|
321 |
-
trust_remote_code: bool = False,
|
322 |
-
):
|
323 |
-
super().__init__()
|
324 |
-
self.output_tokens = output_tokens
|
325 |
-
self.output_dim = output_dim
|
326 |
-
self.image_size = (image_size, image_size)
|
327 |
-
|
328 |
-
if config is None:
|
329 |
-
self.config = AutoConfig.from_pretrained(
|
330 |
-
model_name_or_path,
|
331 |
-
trust_remote_code=trust_remote_code,
|
332 |
-
hidden_dropout_prob=hidden_drop,
|
333 |
-
attention_probs_dropout_prob=attn_drop,
|
334 |
-
drop_path_rate=drop_path,
|
335 |
-
)
|
336 |
-
create_func, model_args = (
|
337 |
-
(AutoModel.from_pretrained, model_name_or_path)
|
338 |
-
if pretrained
|
339 |
-
else (AutoModel.from_config, self.config)
|
340 |
-
)
|
341 |
-
self.transformer = create_func(
|
342 |
-
model_args,
|
343 |
-
trust_remote_code=trust_remote_code,
|
344 |
-
hidden_dropout_prob=hidden_drop,
|
345 |
-
attention_probs_dropout_prob=attn_drop,
|
346 |
-
)
|
347 |
-
else:
|
348 |
-
self.config = config
|
349 |
-
self.transformer = AutoModel.from_config(config)
|
350 |
-
|
351 |
-
if 'dinov2' in model_name_or_path:
|
352 |
-
self.transformer.embeddings.mask_token.requires_grad = False
|
353 |
-
|
354 |
-
assert pool_type in ('tok', 'avg', 'none')
|
355 |
-
self.pool_type = pool_type
|
356 |
-
|
357 |
-
d_model = self.config.hidden_size
|
358 |
-
if (d_model == output_dim) and (proj_type is None): # do we always need a proj?
|
359 |
-
self.proj = nn.Identity()
|
360 |
-
elif proj_type == 'linear':
|
361 |
-
self.proj = nn.Linear(d_model, output_dim, bias=proj_bias)
|
362 |
-
elif proj_type == 'mlp':
|
363 |
-
hidden_size = (d_model + output_dim) // 2
|
364 |
-
self.proj = nn.Sequential(
|
365 |
-
nn.Linear(d_model, hidden_size, bias=proj_bias),
|
366 |
-
nn.GELU(),
|
367 |
-
nn.Linear(hidden_size, output_dim, bias=proj_bias),
|
368 |
-
)
|
369 |
-
|
370 |
-
def _global_pool(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
371 |
-
if self.pool_type == 'avg':
|
372 |
-
pooled, tokens = x[:, 1:].mean(dim=1), x[:, 1:]
|
373 |
-
elif self.pool_type == 'tok':
|
374 |
-
pooled, tokens = x[:, 0], x[:, 1:]
|
375 |
-
else:
|
376 |
-
pooled = tokens = x
|
377 |
-
|
378 |
-
return pooled, tokens
|
379 |
-
|
380 |
-
def forward(self, x: torch.Tensor):
|
381 |
-
# returns a tuple of (final hidden states, token pooled outputs)
|
382 |
-
x = self.transformer(x)[0]
|
383 |
-
pooled, tokens = self._global_pool(x)
|
384 |
-
projected = self.proj(pooled)
|
385 |
-
|
386 |
-
return projected
|
387 |
-
|
388 |
-
def lock(self, unlocked_layers: int = 0, freeze_bn_stats: bool = True):
|
389 |
-
if not unlocked_layers: # full freezing
|
390 |
-
for n, p in self.transformer.named_parameters():
|
391 |
-
p.requires_grad = (
|
392 |
-
(not freeze_bn_stats) if 'LayerNorm' in n.split('.') else False
|
393 |
-
)
|
394 |
-
return
|
395 |
-
|
396 |
-
# TODO: make it work if unlocked_layers !=0
|
397 |
-
encoder = (
|
398 |
-
self.transformer.encoder
|
399 |
-
if hasattr(self.transformer, 'encoder')
|
400 |
-
else self.transformer
|
401 |
-
)
|
402 |
-
layer_list = getattr(
|
403 |
-
encoder, _HF_ARCH_DICT[self.config.model_type]['config_names']['layer_attr']
|
404 |
-
)
|
405 |
-
print(f'Unlocking {unlocked_layers}/{len(layer_list) + 1} layers of hf model')
|
406 |
-
embeddings = getattr(
|
407 |
-
self.transformer,
|
408 |
-
_HF_ARCH_DICT[self.config.model_type]['config_names'][
|
409 |
-
'token_embeddings_attr'
|
410 |
-
],
|
411 |
-
)
|
412 |
-
modules = [embeddings, *layer_list][:-unlocked_layers]
|
413 |
-
# freeze layers
|
414 |
-
for module in modules:
|
415 |
-
for n, p in module.named_parameters():
|
416 |
-
p.requires_grad = (
|
417 |
-
(not freeze_bn_stats) if 'LayerNorm' in n.split('.') else False
|
418 |
-
)
|
419 |
-
|
420 |
-
@torch.jit.ignore
|
421 |
-
def set_grad_checkpointing(self, *_, **__):
|
422 |
-
self.transformer.gradient_checkpointing_enable()
|
423 |
-
|
424 |
-
def init_parameters(self):
|
425 |
-
pass
|
|
|
295 |
def init_parameters(self):
|
296 |
pass
|
297 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|