File size: 11,741 Bytes
56fe6da 96e41b8 56fe6da 92ddc0b 56fe6da 6d5d4fd 96e41b8 56fe6da 6d5d4fd 96e41b8 56fe6da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
# coding=utf-8
#
# Code mainly copied from:
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/clip/configuration_clip.py
# and adjusted for Jina CLIP
import os
from copy import deepcopy
from typing import Any, Dict, List, Optional, Union
from transformers import PretrainedConfig, logging
logger = logging.get_logger(__name__)
""" Jina CLIP model configuration """
class JinaCLIPTextConfig(PretrainedConfig):
model_type = 'jina_clip_text'
def __init__(
self,
embed_dim: int = 768,
hf_model_name_or_path: str = 'jinaai/jina-bert-flash-implementation',
hf_model_config_kwargs: Optional[Dict[str, Any]] = None,
pooler_type: Optional[str] = None,
proj_type: Optional[str] = None,
proj_bias: bool = False,
**kwargs,
):
super().__init__(**kwargs)
self.embed_dim = embed_dim
self.hf_model_name_or_path = hf_model_name_or_path
self.hf_model_config_kwargs = hf_model_config_kwargs or {}
self.pooler_type = pooler_type
self.proj_type = proj_type
self.proj_bias = proj_bias
@classmethod
def from_pretrained(
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
) -> 'PretrainedConfig':
cls._set_token_in_kwargs(kwargs)
configdict, kwargs = cls.get_config_dict(
pretrained_model_name_or_path, **kwargs
)
# get the text config dict if we are loading from JinaCLIPConfig
if configdict.get('model_type') == 'jina_clip':
configdict = configdict['text_config']
if (
'model_type' in configdict
and hasattr(cls, 'model_type')
and configdict['model_type'] != cls.model_type
):
logger.warning(
f'You are using a model of type {configdict["model_type"]} to '
f'instantiate a model of type {cls.model_type}. This is not supported '
'for all configurations of models and can yield errors.'
)
return cls.from_dict(configdict, **kwargs)
class JinaCLIPVisionConfig(PretrainedConfig):
model_type = 'jina_clip_vision'
def __init__(
self,
embed_dim: int = 768,
width: int = 768,
image_size: int = 224,
patch_size: int = 16,
layers: int = 12,
head_width: int = 64,
mlp_ratio: float = 4.0,
ls_init_value: Optional[float] = None,
patch_dropout: float = 0.0,
qkv_bias: bool = True,
fused_layer_norm: bool = False,
x_attention: bool = False,
post_norm: bool = False,
rope_embeddings: bool = False,
pt_hw_seq_len: int = 16,
intp_freq: bool = False,
naive_swiglu: bool = False,
subln: bool = False,
drop_path_rate: float = 0.0,
proj_type: Optional[str] = None,
**kwargs,
):
super().__init__(**kwargs)
self.layers = layers
self.embed_dim = embed_dim
self.width = width
self.head_width = head_width
self.mlp_ratio = mlp_ratio
self.image_size = image_size
self.patch_size = patch_size
self.ls_init_value = ls_init_value
self.patch_dropout = patch_dropout
self.qkv_bias = qkv_bias
self.fused_layer_norm = fused_layer_norm
self.x_attention = x_attention
self.post_norm = post_norm
self.rope_embeddings = rope_embeddings
self.pt_hw_seq_len = pt_hw_seq_len
self.intp_freq = intp_freq
self.naive_swiglu = naive_swiglu
self.subln = subln
self.drop_path_rate = drop_path_rate
self.proj_type = proj_type
@classmethod
def from_pretrained(
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
) -> 'PretrainedConfig':
cls._set_token_in_kwargs(kwargs)
configdict, kwargs = cls.get_config_dict(
pretrained_model_name_or_path, **kwargs
)
# get the vision config dict if we are loading from JinaCLIPConfig
if configdict.get('model_type') == 'jina_clip':
configdict = configdict['vision_config']
if (
'model_type' in configdict
and hasattr(cls, 'model_type')
and configdict['model_type'] != cls.model_type
):
logger.warning(
f'You are using a model of type {configdict["model_type"]} to '
f'instantiate a model of type {cls.model_type}. This is not supported '
'for all configurations of models and can yield errors.'
)
return cls.from_dict(configdict, **kwargs)
class JinaCLIPConfig(PretrainedConfig):
model_type = 'jina_clip'
is_composition = True
def __init__(
self,
text_config: Optional[Dict] = None,
vision_config: Optional[Dict] = None,
add_projections: bool = False,
projection_dim: int = 768,
logit_scale_init_value: float = 2.6592,
use_text_flash_attn: Optional[bool] = None,
use_vision_xformers: Optional[bool] = None,
matryoshka_dimensions: Optional[List[int]] = None,
truncate_dim: Optional[int] = None,
**kwargs,
):
# If `_config_dict` exist, we use them for the backward compatibility.
# We pop out these 2 attributes before calling `super().__init__` to avoid
# them being saved (which causes a lot of confusion!).
text_config_dict: Optional[Dict] = kwargs.pop('text_config_dict', None)
vision_config_dict: Optional[Dict] = kwargs.pop('vision_config_dict', None)
self.use_text_flash_attn = use_text_flash_attn
self.use_vision_xformers = use_vision_xformers
self.matryoshka_dimensions = matryoshka_dimensions
self.truncate_dim = truncate_dim
super().__init__(**kwargs)
if text_config_dict is not None:
if text_config is None:
text_config = {}
# This is the complete result when using `text_config_dict`.
_text_config_dict = JinaCLIPTextConfig(**text_config_dict).to_dict()
# Give a warning if the values exist in both `_text_config_dict` and
# `text_config` but being different.
for key, value in _text_config_dict.items():
if (
key in text_config
and value != text_config[key]
and key not in ['transformers_version']
):
# If specified in `text_config_dict`
if key in text_config_dict:
message = (
f'`{key}` is found in both `text_config_dict` and '
f'`text_config` but with different values. '
f'The value `text_config_dict["{key}"]` will be used '
f'instead.'
)
# If inferred from default argument values (
# just to be super careful)
else:
message = (
f'`text_config_dict` is provided which will be used to '
f'initialize `JinaCLIPTextConfig`. The '
f'value `text_config["{key}"]` will be overriden.'
)
logger.info(message)
# Update all values in `text_config` with the ones in `_text_config_dict`.
text_config.update(_text_config_dict)
if vision_config_dict is not None:
if vision_config is None:
vision_config = {}
# This is the complete result when using `vision_config_dict`.
_vision_config_dict = JinaCLIPVisionConfig(**vision_config_dict).to_dict()
# convert keys to string instead of integer
if 'id2label' in _vision_config_dict:
_vision_config_dict['id2label'] = {
str(key): value
for key, value in _vision_config_dict['id2label'].items()
}
# Give a warning if the values exist in both `_vision_config_dict`
# and `vision_config` but being different.
for key, value in _vision_config_dict.items():
if (
key in vision_config
and value != vision_config[key]
and key not in ['transformers_version']
):
# If specified in `vision_config_dict`
if key in vision_config_dict:
message = (
f'`{key}` is found in both `vision_config_dict` and '
f'`vision_config` but with different '
f'values. The value `vision_config_dict["{key}"]` will '
f'be used instead.'
)
# If inferred from default argument values
# (just to be super careful)
else:
message = (
f'`vision_config_dict` is provided which will be used to '
f'initialize `JinaCLIPVisionConfig`. '
f'The value `vision_config["{key}"]` will be overriden.'
)
logger.info(message)
# Update all values in `vision_config` with the ones in
# `_vision_config_dict`.
vision_config.update(_vision_config_dict)
if text_config is None:
text_config = {}
logger.info(
'`text_config` is `None`. Initializing the `JinaCLIPTextConfig` with '
'default values.'
)
if vision_config is None:
vision_config = {}
logger.info(
'`vision_config` is `None`. initializing the `JinaCLIPVisionConfig` '
'with default values.'
)
self.text_config = JinaCLIPTextConfig(**text_config)
self.vision_config = JinaCLIPVisionConfig(**vision_config)
self.add_projections = add_projections
self.projection_dim = projection_dim
self.logit_scale_init_value = logit_scale_init_value
self.initializer_factor = 1.0
if not self.add_projections:
if self.text_config.embed_dim != self.vision_config.embed_dim:
raise ValueError(
'When projections are disabled (`add_projections=False`), text '
'and vision towers need to have the same embedding dimensionality. '
f'Currently text embedding dim is {self.text_config.embed_dim} != '
f'{self.vision_config.embed_dim} of the vision tower. '
'Either set the same output dim for both towers, or enable '
'projections with `add_projections=True`.'
)
@classmethod
def from_text_vision_configs(
cls,
text_config: JinaCLIPTextConfig,
vision_config: JinaCLIPVisionConfig,
**kwargs,
):
return cls(
text_config=text_config.to_dict(),
vision_config=vision_config.to_dict(),
projection_dim=text_config.projection_dim,
**kwargs,
)
def to_dict(self):
output = deepcopy(self.__dict__)
output['text_config'] = self.text_config.to_dict()
output['vision_config'] = self.vision_config.to_dict()
output['model_type'] = self.__class__.model_type
return output
|