File size: 10,990 Bytes
56fe6da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
# coding=utf-8
#
# Code mainly copied from:
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/clip/modeling_clip.py
# and adjusted for Jina CLIP

from functools import partial
from typing import Optional, Tuple, Union

import torch
import torch.nn.functional as f
import torch.utils.checkpoint
from torch import nn
from transformers import BatchEncoding, BatchFeature, PreTrainedModel, logging
from transformers.models.clip.modeling_clip import (
    CLIPOutput,
    CLIPTextModelOutput,
    CLIPVisionModelOutput,
    clip_loss,
)

from .configuration_clip import JinaCLIPConfig, JinaCLIPTextConfig, JinaCLIPVisionConfig
from .eva_model import EVAVisionTransformer
from .hf_model import HFTextEncoder

logger = logging.get_logger(__name__)


""" Jina CLIP model implementation """


class LayerNorm(nn.LayerNorm):
    """Subclass torch's LayerNorm (with cast back to input dtype)."""

    def forward(self, x: torch.Tensor):
        origtype = x.dtype
        x = f.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
        return x.to(origtype)


def _build_text_tower(config: JinaCLIPTextConfig) -> HFTextEncoder:
    return HFTextEncoder(
        model_name_or_path=config.hf_model_name_or_path,
        output_dim=config.embed_dim,
        pooler_type=config.pooler_type,
        proj_type=config.proj_type,
        proj_bias=config.proj_bias,
        pretrained=False,
        output_tokens=False,
        trust_remote_code=True,
        revision=None,
        model_config_kwargs=config.hf_model_config_kwargs,
    )


def _build_vision_tower(config: JinaCLIPVisionConfig) -> EVAVisionTransformer:
    norm_layer = partial(LayerNorm, eps=1e-6)

    if config.fused_layer_norm:
        try:
            from apex.normalization import FusedLayerNorm

            norm_layer = partial(FusedLayerNorm, eps=1e-6)
        except (ModuleNotFoundError, ImportError):
            logger.warning('Please install apex to use fused layer norm, ignoring')

    return EVAVisionTransformer(
        img_size=config.image_size,
        patch_size=config.patch_size,
        num_classes=config.embed_dim,
        use_mean_pooling=False,
        init_values=config.ls_init_value,
        patch_dropout=config.patch_dropout,
        embed_dim=config.width,
        depth=config.layers,
        num_heads=config.width // config.head_width,
        mlp_ratio=config.mlp_ratio,
        qkv_bias=config.qkv_bias,
        drop_path_rate=config.drop_path_rate,
        norm_layer=norm_layer,
        xattn=config.x_attention,
        rope=config.rope_embeddings,
        postnorm=config.post_norm,
        pt_hw_seq_len=config.pt_hw_seq_len,
        intp_freq=config.intp_freq,
        naiveswiglu=config.naive_swiglu,
        subln=config.subln,
        proj_type=config.proj_type,
    )


class JinaCLIPPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for
    downloading and loading pretrained models.
    """

    config_class = JinaCLIPConfig
    base_model_prefix = 'clip'
    supports_gradient_checkpointing = True

    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, JinaCLIPModel):
            if isinstance(module.text_projection, nn.Linear):
                nn.init.normal_(
                    module.text_projection.weight,
                    std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
                )
            if isinstance(module.text_projection, nn.Linear):
                nn.init.normal_(
                    module.visual_projection.weight,
                    std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
                )
        if isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


class JinaCLIPTextModel(JinaCLIPPreTrainedModel):
    config_class = JinaCLIPTextConfig

    def __init__(self, config: JinaCLIPTextConfig):
        super().__init__(config)
        self.text_model = _build_text_tower(config)
        self.post_init()

    def forward(
        self,
        input_ids: Union[None, torch.Tensor, BatchEncoding] = None,
        return_dict: Optional[bool] = None,
        *_,
        **__,
    ) -> Union[Tuple[Optional[torch.FloatTensor], ...], CLIPTextModelOutput]:
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )
        x = input_ids.input_ids if isinstance(input_ids, BatchEncoding) else input_ids
        feats = self.text_model(x=x)
        out = CLIPTextModelOutput(text_embeds=feats)
        return out if return_dict else out.to_tuple()


class JinaCLIPVisionModel(JinaCLIPPreTrainedModel):
    config_class = JinaCLIPVisionConfig
    main_input_name = 'pixel_values'

    def __init__(self, config: JinaCLIPVisionConfig):
        super().__init__(config)
        self.vision_model = _build_vision_tower(config)
        self.post_init()

    def forward(
        self,
        pixel_values: Union[None, torch.FloatTensor, BatchFeature] = None,
        return_dict: Optional[bool] = None,
        *_,
        **__,
    ) -> Union[Tuple[Optional[torch.FloatTensor], ...], CLIPVisionModelOutput]:
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )
        x = (
            pixel_values.pixel_values
            if isinstance(pixel_values, BatchFeature)
            else pixel_values
        )
        feats = self.vision_model(x=x)
        out = CLIPVisionModelOutput(image_embeds=feats)
        return out if return_dict else out.to_tuple()


class JinaCLIPModel(JinaCLIPPreTrainedModel):
    config_class = JinaCLIPConfig

    def __init__(self, config: JinaCLIPConfig):
        super().__init__(config)

        if not isinstance(config.text_config, JinaCLIPTextConfig):
            raise ValueError(
                'Attribute config.text_config is expected to be of type '
                f'JinaCLIPTextConfig but is of type {type(config.text_config)}.'
            )

        if not isinstance(config.vision_config, JinaCLIPVisionConfig):
            raise ValueError(
                'Attribute config.vision_config is expected to be of type '
                f'JinaCLIPVisionConfig but is of type {type(config.vision_config)}.'
            )

        text_config = config.text_config
        vision_config = config.vision_config

        self.add_projections = config.add_projections
        self.projection_dim = config.projection_dim
        self.text_embed_dim = text_config.embed_dim
        self.vision_embed_dim = vision_config.embed_dim

        self.text_model = _build_text_tower(text_config)
        self.vision_model = _build_vision_tower(vision_config)
        self.logit_scale = nn.Parameter(
            torch.tensor(self.config.logit_scale_init_value)
        )

        if self.add_projections:
            self.visual_projection = nn.Linear(
                self.vision_embed_dim, self.projection_dim, bias=False
            )
            self.text_projection = nn.Linear(
                self.text_embed_dim, self.projection_dim, bias=False
            )
        else:
            self.visual_projection = nn.Identity()
            self.text_projection = nn.Identity()

        self.post_init()

    def get_text_features(
        self,
        input_ids: Union[None, torch.Tensor, BatchEncoding] = None,
        *_,
        **__,
    ) -> torch.FloatTensor:
        x = input_ids.input_ids if isinstance(input_ids, BatchEncoding) else input_ids
        return self.text_projection(self.text_model(x=x))

    def get_image_features(
        self,
        pixel_values: Union[None, torch.FloatTensor, BatchFeature] = None,
        *_,
        **__,
    ) -> torch.FloatTensor:
        x = (
            pixel_values.pixel_values
            if isinstance(pixel_values, BatchFeature)
            else pixel_values
        )
        return self.visual_projection(self.vision_model(x=x))

    def encode_text(
        self,
        input_ids: Union[None, torch.Tensor, BatchEncoding] = None,
        return_dict: Optional[bool] = None,
        *_,
        **__,
    ) -> Union[Tuple[Optional[torch.FloatTensor], ...], CLIPTextModelOutput]:
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )
        feats = self.get_text_features(input_ids=input_ids)
        out = CLIPTextModelOutput(text_embeds=feats)
        return out if return_dict else out.to_tuple()

    def encode_image(
        self,
        pixel_values: Union[None, torch.FloatTensor, BatchFeature] = None,
        return_dict: Optional[bool] = None,
        *_,
        **__,
    ) -> Union[Tuple[Optional[torch.FloatTensor], ...], CLIPVisionModelOutput]:
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )
        feats = self.get_image_features(pixel_values=pixel_values)
        out = CLIPVisionModelOutput(image_embeds=feats)
        return out if return_dict else out.to_tuple()

    def forward(
        self,
        input_ids: Union[None, torch.Tensor, BatchEncoding] = None,
        pixel_values: Union[None, torch.FloatTensor, BatchFeature] = None,
        return_dict: Optional[bool] = None,
        return_loss: Optional[bool] = None,
        *_,
        **__,
    ) -> Union[Tuple[Optional[torch.FloatTensor], ...], CLIPOutput]:
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )
        image_embeds = self.get_image_features(pixel_values=pixel_values)
        text_embeds = self.get_text_features(input_ids=input_ids)

        # normalized features
        image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
        text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)

        # cosine similarity as logits
        logit_scale = self.logit_scale.exp()
        logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
        logits_per_image = logits_per_text.t()

        loss = None
        if return_loss:
            loss = clip_loss(logits_per_text)

        if not return_dict:
            output = (
                logits_per_image,
                logits_per_text,
                text_embeds,
                image_embeds,
                None,
                None,
            )
            return ((loss,) + output) if loss is not None else output

        return CLIPOutput(
            loss=loss,
            logits_per_image=logits_per_image,
            logits_per_text=logits_per_text,
            text_embeds=text_embeds,
            image_embeds=image_embeds,
            text_model_output=None,
            vision_model_output=None,
        )