Jackmin108 commited on
Commit
0007991
·
1 Parent(s): 2f66e12
README.md ADDED
File without changes
config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "jinaai/jina-bert-implementation",
3
+ "model_max_length": 8192,
4
+ "architectures": [
5
+ "JinaBertForMaskedLM"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_bert.JinaBertConfig",
10
+ "AutoModelForMaskedLM": "modeling_bert.JinaBertForMaskedLM",
11
+ "AutoModel": "modeling_bert.JinaBertModel",
12
+ "AutoModelForSequenceClassification": "modeling_bert.JinaBertForSequenceClassification"
13
+ },
14
+ "classifier_dropout": null,
15
+ "gradient_checkpointing": false,
16
+ "hidden_act": "gelu",
17
+ "hidden_dropout_prob": 0.0,
18
+ "hidden_size": 768,
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 3072,
21
+ "layer_norm_eps": 1e-12,
22
+ "max_position_embeddings": 8192,
23
+ "model_type": "bert",
24
+ "num_attention_heads": 12,
25
+ "num_hidden_layers": 12,
26
+ "pad_token_id": 0,
27
+ "position_embedding_type": "alibi",
28
+ "torch_dtype": "float32",
29
+ "transformers_version": "4.26.0",
30
+ "type_vocab_size": 2,
31
+ "use_cache": true,
32
+ "vocab_size": 61056,
33
+ "feed_forward_type": "geglu",
34
+ "emb_pooler": "mean"
35
+ }
configuration_bert.py ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ # Copyright (c) 2023 Jina AI GmbH. All rights reserved.
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+ """ BERT model configuration"""
18
+ from collections import OrderedDict
19
+ from typing import Mapping
20
+
21
+ from transformers.configuration_utils import PretrainedConfig
22
+ from transformers.onnx import OnnxConfig
23
+ from transformers.utils import logging
24
+
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+
29
+ class JinaBertConfig(PretrainedConfig):
30
+ r"""
31
+ This is the configuration class to store the configuration of a [`JinaBertModel`]. It is used to
32
+ instantiate a BERT model according to the specified arguments, defining the model architecture. Instantiating a
33
+ configuration with the defaults will yield a similar configuration to that of the BERT
34
+ [bert-base-uncased](https://huggingface.co/bert-base-uncased) architecture.
35
+
36
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
37
+ documentation from [`PretrainedConfig`] for more information.
38
+
39
+
40
+ Args:
41
+ vocab_size (`int`, *optional*, defaults to 30522):
42
+ Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
43
+ `inputs_ids` passed when calling [`BertModel`] or [`TFBertModel`].
44
+ hidden_size (`int`, *optional*, defaults to 768):
45
+ Dimensionality of the encoder layers and the pooler layer.
46
+ num_hidden_layers (`int`, *optional*, defaults to 12):
47
+ Number of hidden layers in the Transformer encoder.
48
+ num_attention_heads (`int`, *optional*, defaults to 12):
49
+ Number of attention heads for each attention layer in the Transformer encoder.
50
+ intermediate_size (`int`, *optional*, defaults to 3072):
51
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
52
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
53
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
54
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
55
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
56
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
57
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
58
+ The dropout ratio for the attention probabilities.
59
+ max_position_embeddings (`int`, *optional*, defaults to 512):
60
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
61
+ just in case (e.g., 512 or 1024 or 2048).
62
+ type_vocab_size (`int`, *optional*, defaults to 2):
63
+ The vocabulary size of the `token_type_ids` passed when calling [`BertModel`] or [`TFBertModel`].
64
+ initializer_range (`float`, *optional*, defaults to 0.02):
65
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
66
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
67
+ The epsilon used by the layer normalization layers.
68
+ position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
69
+ Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
70
+ positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
71
+ [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
72
+ For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
73
+ with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
74
+ is_decoder (`bool`, *optional*, defaults to `False`):
75
+ Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
76
+ use_cache (`bool`, *optional*, defaults to `True`):
77
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
78
+ relevant if `config.is_decoder=True`.
79
+ classifier_dropout (`float`, *optional*):
80
+ The dropout ratio for the classification head.
81
+ feed_forward_type (`str`, *optional*, defaults to `"original"`):
82
+ The type of feed forward layer to use in the bert layers.
83
+ Can be one of GLU variants, e.g. `"reglu"`, `"geglu"`
84
+ emb_pooler (`str`, *optional*, defaults to `None`):
85
+ The function to use for pooling the last layer embeddings to get the sentence embeddings.
86
+ Should be one of `None`, `"mean"`.
87
+ attn_implementation (`str`, *optional*, defaults to `"torch"`):
88
+ The implementation of the self-attention layer. Can be one of:
89
+ - `None` for the original implementation,
90
+ - `torch` for the PyTorch SDPA implementation,
91
+
92
+ Examples:
93
+
94
+ ```python
95
+ >>> from transformers import JinaBertConfig, JinaBertModel
96
+
97
+ >>> # Initializing a JinaBert configuration
98
+ >>> configuration = JinaBertConfig()
99
+
100
+ >>> # Initializing a model (with random weights) from the configuration
101
+ >>> model = JinaBertModel(configuration)
102
+
103
+ >>> # Accessing the model configuration
104
+ >>> configuration = model.config
105
+
106
+ >>> # Encode text inputs
107
+ >>> embeddings = model.encode(text_inputs)
108
+ ```"""
109
+ model_type = "bert"
110
+
111
+ def __init__(
112
+ self,
113
+ vocab_size=30522,
114
+ hidden_size=768,
115
+ num_hidden_layers=12,
116
+ num_attention_heads=12,
117
+ intermediate_size=3072,
118
+ hidden_act="gelu",
119
+ hidden_dropout_prob=0.1,
120
+ attention_probs_dropout_prob=0.1,
121
+ max_position_embeddings=512,
122
+ type_vocab_size=2,
123
+ initializer_range=0.02,
124
+ layer_norm_eps=1e-12,
125
+ pad_token_id=0,
126
+ position_embedding_type="absolute",
127
+ use_cache=True,
128
+ classifier_dropout=None,
129
+ feed_forward_type="original",
130
+ emb_pooler=None,
131
+ attn_implementation='torch',
132
+ **kwargs,
133
+ ):
134
+ super().__init__(pad_token_id=pad_token_id, **kwargs)
135
+
136
+ self.vocab_size = vocab_size
137
+ self.hidden_size = hidden_size
138
+ self.num_hidden_layers = num_hidden_layers
139
+ self.num_attention_heads = num_attention_heads
140
+ self.hidden_act = hidden_act
141
+ self.intermediate_size = intermediate_size
142
+ self.hidden_dropout_prob = hidden_dropout_prob
143
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
144
+ self.max_position_embeddings = max_position_embeddings
145
+ self.type_vocab_size = type_vocab_size
146
+ self.initializer_range = initializer_range
147
+ self.layer_norm_eps = layer_norm_eps
148
+ self.position_embedding_type = position_embedding_type
149
+ self.use_cache = use_cache
150
+ self.classifier_dropout = classifier_dropout
151
+ self.feed_forward_type = feed_forward_type
152
+ self.emb_pooler = emb_pooler
153
+ self.attn_implementation = attn_implementation
154
+
155
+ class JinaBertOnnxConfig(OnnxConfig):
156
+ @property
157
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
158
+ if self.task == "multiple-choice":
159
+ dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
160
+ else:
161
+ dynamic_axis = {0: "batch", 1: "sequence"}
162
+ return OrderedDict(
163
+ [
164
+ ("input_ids", dynamic_axis),
165
+ ("attention_mask", dynamic_axis),
166
+ ("token_type_ids", dynamic_axis),
167
+ ]
168
+ )
modeling_bert.py ADDED
@@ -0,0 +1,2331 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ # Copyright (c) 2023 Jina AI GmbH. All rights reserved.
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+ """PyTorch BERT model."""
18
+
19
+
20
+ import math
21
+ import os
22
+ import warnings
23
+ from dataclasses import dataclass
24
+ from typing import List, Optional, Tuple, Union
25
+ import numpy as np
26
+
27
+ import torch
28
+ import torch.utils.checkpoint
29
+ from torch import nn
30
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
31
+
32
+ from transformers.activations import ACT2FN
33
+ from transformers.modeling_outputs import (
34
+ BaseModelOutputWithPastAndCrossAttentions,
35
+ BaseModelOutputWithPoolingAndCrossAttentions,
36
+ CausalLMOutputWithCrossAttentions,
37
+ MaskedLMOutput,
38
+ MultipleChoiceModelOutput,
39
+ NextSentencePredictorOutput,
40
+ QuestionAnsweringModelOutput,
41
+ SequenceClassifierOutput,
42
+ TokenClassifierOutput,
43
+ )
44
+ from transformers.modeling_utils import PreTrainedModel
45
+ from transformers.pytorch_utils import (
46
+ apply_chunking_to_forward,
47
+ find_pruneable_heads_and_indices,
48
+ prune_linear_layer,
49
+ )
50
+ from transformers.utils import (
51
+ ModelOutput,
52
+ add_code_sample_docstrings,
53
+ add_start_docstrings,
54
+ add_start_docstrings_to_model_forward,
55
+ logging,
56
+ replace_return_docstrings,
57
+ )
58
+ from .configuration_bert import JinaBertConfig
59
+
60
+ # Torch implementation
61
+ try:
62
+ from torch.nn.functional import scaled_dot_product_attention
63
+ except ImportError:
64
+ scaled_dot_product_attention = None
65
+
66
+ # This is used by encode but user may not have it installed
67
+ try:
68
+ from tqdm.autonotebook import trange
69
+
70
+ has_tqdm = True
71
+ except ImportError:
72
+ has_tqdm = False
73
+
74
+ logger = logging.get_logger(__name__)
75
+
76
+ _CHECKPOINT_FOR_DOC = "bert-base-uncased"
77
+ _CONFIG_FOR_DOC = "JinaBertConfig"
78
+
79
+ # TokenClassification docstring
80
+ _CHECKPOINT_FOR_TOKEN_CLASSIFICATION = (
81
+ "dbmdz/bert-large-cased-finetuned-conll03-english"
82
+ )
83
+ _TOKEN_CLASS_EXPECTED_OUTPUT = "['O', 'I-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC'] "
84
+ _TOKEN_CLASS_EXPECTED_LOSS = 0.01
85
+
86
+ # QuestionAnswering docstring
87
+ _CHECKPOINT_FOR_QA = "deepset/bert-base-cased-squad2"
88
+ _QA_EXPECTED_OUTPUT = "'a nice puppet'"
89
+ _QA_EXPECTED_LOSS = 7.41
90
+ _QA_TARGET_START_INDEX = 14
91
+ _QA_TARGET_END_INDEX = 15
92
+
93
+ # SequenceClassification docstring
94
+ _CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "textattack/bert-base-uncased-yelp-polarity"
95
+ _SEQ_CLASS_EXPECTED_OUTPUT = "'LABEL_1'"
96
+ _SEQ_CLASS_EXPECTED_LOSS = 0.01
97
+
98
+
99
+ def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
100
+ """Load tf checkpoints in a pytorch model."""
101
+ try:
102
+ import re
103
+
104
+ import numpy as np
105
+ import tensorflow as tf
106
+ except ImportError:
107
+ logger.error(
108
+ "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
109
+ "https://www.tensorflow.org/install/ for installation instructions."
110
+ )
111
+ raise
112
+ tf_path = os.path.abspath(tf_checkpoint_path)
113
+ logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
114
+ # Load weights from TF model
115
+ init_vars = tf.train.list_variables(tf_path)
116
+ names = []
117
+ arrays = []
118
+ for name, shape in init_vars:
119
+ logger.info(f"Loading TF weight {name} with shape {shape}")
120
+ array = tf.train.load_variable(tf_path, name)
121
+ names.append(name)
122
+ arrays.append(array)
123
+
124
+ for name, array in zip(names, arrays):
125
+ name = name.split("/")
126
+ # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
127
+ # which are not required for using pretrained model
128
+ if any(
129
+ n
130
+ in [
131
+ "adam_v",
132
+ "adam_m",
133
+ "AdamWeightDecayOptimizer",
134
+ "AdamWeightDecayOptimizer_1",
135
+ "global_step",
136
+ ]
137
+ for n in name
138
+ ):
139
+ logger.info(f"Skipping {'/'.join(name)}")
140
+ continue
141
+ pointer = model
142
+ for m_name in name:
143
+ if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
144
+ scope_names = re.split(r"_(\d+)", m_name)
145
+ else:
146
+ scope_names = [m_name]
147
+ if scope_names[0] == "kernel" or scope_names[0] == "gamma":
148
+ pointer = getattr(pointer, "weight")
149
+ elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
150
+ pointer = getattr(pointer, "bias")
151
+ elif scope_names[0] == "output_weights":
152
+ pointer = getattr(pointer, "weight")
153
+ elif scope_names[0] == "squad":
154
+ pointer = getattr(pointer, "classifier")
155
+ else:
156
+ try:
157
+ pointer = getattr(pointer, scope_names[0])
158
+ except AttributeError:
159
+ logger.info(f"Skipping {'/'.join(name)}")
160
+ continue
161
+ if len(scope_names) >= 2:
162
+ num = int(scope_names[1])
163
+ pointer = pointer[num]
164
+ if m_name[-11:] == "_embeddings":
165
+ pointer = getattr(pointer, "weight")
166
+ elif m_name == "kernel":
167
+ array = np.transpose(array)
168
+ try:
169
+ if pointer.shape != array.shape:
170
+ raise ValueError(
171
+ f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
172
+ )
173
+ except ValueError as e:
174
+ e.args += (pointer.shape, array.shape)
175
+ raise
176
+ logger.info(f"Initialize PyTorch weight {name}")
177
+ pointer.data = torch.from_numpy(array)
178
+ return model
179
+
180
+
181
+ class JinaBertEmbeddings(nn.Module):
182
+ """Construct the embeddings from word, position and token_type embeddings."""
183
+
184
+ def __init__(self, config: JinaBertConfig):
185
+ super().__init__()
186
+ self.word_embeddings = nn.Embedding(
187
+ config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id
188
+ )
189
+ if config.position_embedding_type != "alibi":
190
+ self.position_embeddings = nn.Embedding(
191
+ config.max_position_embeddings, config.hidden_size
192
+ )
193
+ self.token_type_embeddings = nn.Embedding(
194
+ config.type_vocab_size, config.hidden_size
195
+ )
196
+
197
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
198
+ # any TensorFlow checkpoint file
199
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
200
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
201
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
202
+ self.position_embedding_type = getattr(
203
+ config, "position_embedding_type", "absolute"
204
+ )
205
+ self.register_buffer(
206
+ "position_ids",
207
+ torch.arange(config.max_position_embeddings).expand((1, -1)),
208
+ persistent=False,
209
+ )
210
+ self.register_buffer(
211
+ "token_type_ids",
212
+ torch.zeros(self.position_ids.size(), dtype=torch.long),
213
+ persistent=False,
214
+ )
215
+
216
+ def forward(
217
+ self,
218
+ input_ids: Optional[torch.LongTensor] = None,
219
+ token_type_ids: Optional[torch.LongTensor] = None,
220
+ position_ids: Optional[torch.LongTensor] = None,
221
+ inputs_embeds: Optional[torch.FloatTensor] = None,
222
+ past_key_values_length: int = 0,
223
+ ) -> torch.Tensor:
224
+ if input_ids is not None:
225
+ input_shape = input_ids.size()
226
+ else:
227
+ input_shape = inputs_embeds.size()[:-1]
228
+
229
+ seq_length = input_shape[1]
230
+
231
+ if position_ids is None:
232
+ position_ids = self.position_ids[
233
+ :, past_key_values_length : seq_length + past_key_values_length
234
+ ]
235
+
236
+ # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
237
+ # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
238
+ # issue #5664
239
+ if token_type_ids is None:
240
+ if hasattr(self, "token_type_ids"):
241
+ buffered_token_type_ids = self.token_type_ids[:, :seq_length]
242
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(
243
+ input_shape[0], seq_length
244
+ )
245
+ token_type_ids = buffered_token_type_ids_expanded
246
+ else:
247
+ token_type_ids = torch.zeros(
248
+ input_shape, dtype=torch.long, device=self.position_ids.device
249
+ )
250
+
251
+ if inputs_embeds is None:
252
+ inputs_embeds = self.word_embeddings(input_ids)
253
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
254
+
255
+ embeddings = inputs_embeds + token_type_embeddings
256
+ if self.position_embedding_type == "absolute":
257
+ position_embeddings = self.position_embeddings(position_ids)
258
+ embeddings += position_embeddings
259
+ embeddings = self.LayerNorm(embeddings)
260
+ embeddings = self.dropout(embeddings)
261
+ return embeddings
262
+
263
+
264
+ class JinaBertSelfAttention(nn.Module):
265
+ def __init__(self, config: JinaBertConfig, position_embedding_type=None):
266
+ super().__init__()
267
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
268
+ config, "embedding_size"
269
+ ):
270
+ raise ValueError(
271
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
272
+ f"heads ({config.num_attention_heads})"
273
+ )
274
+
275
+ self.attn_implementation = config.attn_implementation
276
+ self.num_attention_heads = config.num_attention_heads
277
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
278
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
279
+
280
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
281
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
282
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
283
+
284
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
285
+ self.position_embedding_type = position_embedding_type or getattr(
286
+ config, "position_embedding_type", "absolute"
287
+ )
288
+ if (
289
+ self.position_embedding_type == "relative_key"
290
+ or self.position_embedding_type == "relative_key_query"
291
+ ):
292
+ self.max_position_embeddings = config.max_position_embeddings
293
+ self.distance_embedding = nn.Embedding(
294
+ 2 * config.max_position_embeddings - 1, self.attention_head_size
295
+ )
296
+
297
+ self.is_decoder = config.is_decoder
298
+
299
+ def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
300
+ new_x_shape = x.size()[:-1] + (
301
+ self.num_attention_heads,
302
+ self.attention_head_size,
303
+ )
304
+ x = x.view(new_x_shape)
305
+ return x.permute(0, 2, 1, 3)
306
+
307
+ def forward(
308
+ self,
309
+ hidden_states: torch.Tensor,
310
+ attention_mask: Optional[torch.FloatTensor] = None,
311
+ head_mask: Optional[torch.FloatTensor] = None,
312
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
313
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
314
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
315
+ output_attentions: Optional[bool] = False,
316
+ bias: Optional[torch.FloatTensor] = None,
317
+ ) -> Tuple[torch.Tensor]:
318
+ mixed_query_layer = self.query(hidden_states)
319
+
320
+ # If this is instantiated as a cross-attention module, the keys
321
+ # and values come from an encoder; the attention mask needs to be
322
+ # such that the encoder's padding tokens are not attended to.
323
+ is_cross_attention = encoder_hidden_states is not None
324
+
325
+ if is_cross_attention and past_key_value is not None:
326
+ # reuse k,v, cross_attentions
327
+ key_layer = past_key_value[0]
328
+ value_layer = past_key_value[1]
329
+ attention_mask = encoder_attention_mask
330
+ elif is_cross_attention:
331
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
332
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
333
+ attention_mask = encoder_attention_mask
334
+ elif past_key_value is not None:
335
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
336
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
337
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
338
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
339
+ else:
340
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
341
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
342
+
343
+ query_layer = self.transpose_for_scores(mixed_query_layer)
344
+
345
+ use_cache = past_key_value is not None
346
+ if self.is_decoder:
347
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
348
+ # Further calls to cross_attention layer can then reuse all cross-attention
349
+ # key/value_states (first "if" case)
350
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
351
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
352
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
353
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
354
+ past_key_value = (key_layer, value_layer)
355
+
356
+ if self.attn_implementation == 'torch' and scaled_dot_product_attention is not None:
357
+ b, _, s, _ = query_layer.shape
358
+ new_bias = attention_mask + bias
359
+ attn = scaled_dot_product_attention(query_layer, key_layer, value_layer, new_bias)
360
+ attn = attn.permute(0, 2, 1, 3).contiguous()
361
+ return (attn.view(b, s, self.all_head_size),)
362
+
363
+ # Take the dot product between "query" and "key" to get the raw attention scores.
364
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
365
+
366
+ if (
367
+ self.position_embedding_type == "relative_key"
368
+ or self.position_embedding_type == "relative_key_query"
369
+ ):
370
+ query_length, key_length = query_layer.shape[2], key_layer.shape[2]
371
+ if use_cache:
372
+ position_ids_l = torch.tensor(
373
+ key_length - 1, dtype=torch.long, device=hidden_states.device
374
+ ).view(-1, 1)
375
+ else:
376
+ position_ids_l = torch.arange(
377
+ query_length, dtype=torch.long, device=hidden_states.device
378
+ ).view(-1, 1)
379
+ position_ids_r = torch.arange(
380
+ key_length, dtype=torch.long, device=hidden_states.device
381
+ ).view(1, -1)
382
+ distance = position_ids_l - position_ids_r
383
+
384
+ positional_embedding = self.distance_embedding(
385
+ distance + self.max_position_embeddings - 1
386
+ )
387
+ positional_embedding = positional_embedding.to(
388
+ dtype=query_layer.dtype
389
+ ) # fp16 compatibility
390
+
391
+ if self.position_embedding_type == "relative_key":
392
+ relative_position_scores = torch.einsum(
393
+ "bhld,lrd->bhlr", query_layer, positional_embedding
394
+ )
395
+ attention_scores = attention_scores + relative_position_scores
396
+ elif self.position_embedding_type == "relative_key_query":
397
+ relative_position_scores_query = torch.einsum(
398
+ "bhld,lrd->bhlr", query_layer, positional_embedding
399
+ )
400
+ relative_position_scores_key = torch.einsum(
401
+ "bhrd,lrd->bhlr", key_layer, positional_embedding
402
+ )
403
+ attention_scores = (
404
+ attention_scores
405
+ + relative_position_scores_query
406
+ + relative_position_scores_key
407
+ )
408
+
409
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
410
+ if attention_mask is not None:
411
+ # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
412
+ attention_scores = attention_scores + attention_mask
413
+
414
+ # Normalize the attention scores to probabilities.
415
+ attention_probs = nn.functional.softmax(attention_scores + bias, dim=-1)
416
+
417
+ # This is actually dropping out entire tokens to attend to, which might
418
+ # seem a bit unusual, but is taken from the original Transformer paper.
419
+ attention_probs = self.dropout(attention_probs)
420
+
421
+ # Mask heads if we want to
422
+ if head_mask is not None:
423
+ attention_probs = attention_probs * head_mask
424
+
425
+ context_layer = torch.matmul(attention_probs, value_layer)
426
+
427
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
428
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
429
+ context_layer = context_layer.view(new_context_layer_shape)
430
+
431
+ outputs = (
432
+ (context_layer, attention_probs) if output_attentions else (context_layer,)
433
+ )
434
+
435
+ if self.is_decoder:
436
+ outputs = outputs + (past_key_value,)
437
+ return outputs
438
+
439
+
440
+ class JinaBertSelfOutput(nn.Module):
441
+ def __init__(self, config):
442
+ super().__init__()
443
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
444
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
445
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
446
+
447
+ def forward(
448
+ self, hidden_states: torch.Tensor, input_tensor: torch.Tensor
449
+ ) -> torch.Tensor:
450
+ hidden_states = self.dense(hidden_states)
451
+ hidden_states = self.dropout(hidden_states)
452
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
453
+ return hidden_states
454
+
455
+
456
+ class JinaBertAttention(nn.Module):
457
+ def __init__(self, config, position_embedding_type=None):
458
+ super().__init__()
459
+ self.self = JinaBertSelfAttention(
460
+ config, position_embedding_type=position_embedding_type
461
+ )
462
+ self.output = JinaBertSelfOutput(config)
463
+ self.pruned_heads = set()
464
+
465
+ def prune_heads(self, heads):
466
+ if len(heads) == 0:
467
+ return
468
+ heads, index = find_pruneable_heads_and_indices(
469
+ heads,
470
+ self.self.num_attention_heads,
471
+ self.self.attention_head_size,
472
+ self.pruned_heads,
473
+ )
474
+
475
+ # Prune linear layers
476
+ self.self.query = prune_linear_layer(self.self.query, index)
477
+ self.self.key = prune_linear_layer(self.self.key, index)
478
+ self.self.value = prune_linear_layer(self.self.value, index)
479
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
480
+
481
+ # Update hyper params and store pruned heads
482
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
483
+ self.self.all_head_size = (
484
+ self.self.attention_head_size * self.self.num_attention_heads
485
+ )
486
+ self.pruned_heads = self.pruned_heads.union(heads)
487
+
488
+ def forward(
489
+ self,
490
+ hidden_states: torch.Tensor,
491
+ attention_mask: Optional[torch.FloatTensor] = None,
492
+ head_mask: Optional[torch.FloatTensor] = None,
493
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
494
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
495
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
496
+ output_attentions: Optional[bool] = False,
497
+ bias: Optional[torch.FloatTensor] = None,
498
+ ) -> Tuple[torch.Tensor]:
499
+ self_outputs = self.self(
500
+ hidden_states,
501
+ attention_mask,
502
+ head_mask,
503
+ encoder_hidden_states,
504
+ encoder_attention_mask,
505
+ past_key_value,
506
+ output_attentions,
507
+ bias,
508
+ )
509
+ attention_output = self.output(self_outputs[0], hidden_states)
510
+ outputs = (attention_output,) + self_outputs[
511
+ 1:
512
+ ] # add attentions if we output them
513
+ return outputs
514
+
515
+
516
+ class JinaBertMLP(nn.Module):
517
+ def __init__(self, config: JinaBertConfig):
518
+ super().__init__()
519
+ self.config = config
520
+ self.act = ACT2FN[config.hidden_act]
521
+ self.up_layer = nn.Linear(
522
+ config.hidden_size, config.intermediate_size, bias=False
523
+ )
524
+ self.down_layer = nn.Linear(config.intermediate_size, config.hidden_size)
525
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
526
+
527
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
528
+ # Up
529
+ hidden_mlp_states = self.act(self.up_layer(hidden_states))
530
+ hidden_mlp_states = self.dropout(hidden_mlp_states)
531
+ # Down
532
+ return self.down_layer(hidden_mlp_states)
533
+
534
+
535
+ class JinaBertGLUMLP(nn.Module):
536
+ def __init__(self, config: JinaBertConfig):
537
+ super().__init__()
538
+ self.config = config
539
+ if config.feed_forward_type == 'reglu':
540
+ self.act = nn.ReLU()
541
+ elif config.feed_forward_type == 'geglu':
542
+ self.act = nn.GELU()
543
+ else:
544
+ raise ValueError(
545
+ f"feed_forward_type {config.feed_forward_type} not supported"
546
+ )
547
+ self.up_gated_layer = nn.Linear(
548
+ config.hidden_size, config.intermediate_size * 2, bias=False
549
+ )
550
+ self.down_layer = nn.Linear(config.intermediate_size, config.hidden_size)
551
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
552
+
553
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
554
+ # Up with gate
555
+ hidden_mlp_states = self.up_gated_layer(hidden_states)
556
+ up = hidden_mlp_states[:, :, :self.config.intermediate_size]
557
+ gated = hidden_mlp_states[:, :, self.config.intermediate_size:]
558
+ hidden_mlp_states = up * self.act(gated)
559
+ hidden_mlp_states = self.dropout(hidden_mlp_states)
560
+ # Down
561
+ return self.down_layer(hidden_mlp_states)
562
+
563
+
564
+ class JinaBertLayer(nn.Module):
565
+ def __init__(self, config: JinaBertConfig):
566
+ super().__init__()
567
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
568
+ self.seq_len_dim = 1
569
+ self.attention = JinaBertAttention(config)
570
+ self.is_decoder = config.is_decoder
571
+ self.add_cross_attention = config.add_cross_attention
572
+ self.feed_forward_type = config.feed_forward_type
573
+ self.layer_norm_1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
574
+ self.layer_norm_2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
575
+ if self.add_cross_attention:
576
+ if not self.is_decoder:
577
+ raise ValueError(
578
+ f"{self} should be used as a decoder model if cross attention is added"
579
+ )
580
+ self.crossattention = JinaBertAttention(
581
+ config, position_embedding_type="absolute"
582
+ )
583
+ if self.feed_forward_type.endswith('glu'):
584
+ self.mlp = JinaBertGLUMLP(config)
585
+ else:
586
+ self.mlp = JinaBertMLP(config)
587
+
588
+ def forward(
589
+ self,
590
+ hidden_states: torch.Tensor,
591
+ attention_mask: Optional[torch.FloatTensor] = None,
592
+ head_mask: Optional[torch.FloatTensor] = None,
593
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
594
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
595
+ bias: Optional[torch.FloatTensor] = None,
596
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
597
+ output_attentions: Optional[bool] = False,
598
+ ) -> Tuple[torch.Tensor]:
599
+ # Pre-Norm
600
+ residual = hidden_states
601
+
602
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
603
+ self_attn_past_key_value = (
604
+ past_key_value[:2] if past_key_value is not None else None
605
+ )
606
+ self_attention_outputs = self.attention(
607
+ hidden_states,
608
+ attention_mask,
609
+ head_mask,
610
+ output_attentions=output_attentions,
611
+ past_key_value=self_attn_past_key_value,
612
+ bias=bias,
613
+ )
614
+ attention_output = self_attention_outputs[0]
615
+
616
+ # if decoder, the last output is tuple of self-attn cache
617
+ if self.is_decoder:
618
+ outputs = self_attention_outputs[1:-1]
619
+ present_key_value = self_attention_outputs[-1]
620
+ else:
621
+ outputs = self_attention_outputs[
622
+ 1:
623
+ ] # add self attentions if we output attention weights
624
+
625
+ cross_attn_present_key_value = None
626
+ if self.is_decoder and encoder_hidden_states is not None:
627
+ if not hasattr(self, "crossattention"):
628
+ raise ValueError(
629
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
630
+ " by setting `config.add_cross_attention=True`"
631
+ )
632
+
633
+ # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
634
+ cross_attn_past_key_value = (
635
+ past_key_value[-2:] if past_key_value is not None else None
636
+ )
637
+ cross_attention_outputs = self.crossattention(
638
+ attention_output,
639
+ attention_mask,
640
+ head_mask,
641
+ encoder_hidden_states,
642
+ encoder_attention_mask,
643
+ cross_attn_past_key_value,
644
+ output_attentions,
645
+ )
646
+ attention_output = cross_attention_outputs[0]
647
+ outputs = (
648
+ outputs + cross_attention_outputs[1:-1]
649
+ ) # add cross attentions if we output attention weights
650
+
651
+ # add cross-attn cache to positions 3,4 of present_key_value tuple
652
+ cross_attn_present_key_value = cross_attention_outputs[-1]
653
+ present_key_value = present_key_value + cross_attn_present_key_value
654
+
655
+ residual = self.layer_norm_1(residual + attention_output)
656
+ mlp_output = self.mlp(residual)
657
+ layer_output = self.layer_norm_2(residual + mlp_output)
658
+ outputs = (layer_output,) + outputs
659
+
660
+ # if decoder, return the attn key/values as the last output
661
+ if self.is_decoder:
662
+ outputs = outputs + (present_key_value,)
663
+
664
+ return outputs
665
+
666
+
667
+ class JinaBertEncoder(nn.Module):
668
+ def __init__(self, config: JinaBertConfig):
669
+ super().__init__()
670
+ self.config = config
671
+ self.layer = nn.ModuleList(
672
+ [JinaBertLayer(config) for _ in range(config.num_hidden_layers)]
673
+ )
674
+ self.gradient_checkpointing = False
675
+ self.num_attention_heads = config.num_attention_heads
676
+ self.register_buffer(
677
+ "alibi",
678
+ self.rebuild_alibi_tensor(size=config.max_position_embeddings),
679
+ persistent=False,
680
+ )
681
+
682
+ def rebuild_alibi_tensor(
683
+ self, size: int, device: Optional[Union[torch.device, str]] = None
684
+ ):
685
+ # Alibi
686
+ # Following https://github.com/ofirpress/attention_with_linear_biases/issues/5 (Implementation 1)
687
+ # In the causal case, you can exploit the fact that softmax is invariant to a uniform translation
688
+ # of the logits, which makes the math work out *after* applying causal masking. If no causal masking
689
+ # will be applied, it is necessary to construct the diagonal mask.
690
+ n_heads = self.num_attention_heads
691
+
692
+ def _get_alibi_head_slopes(n_heads: int) -> List[float]:
693
+ def get_slopes_power_of_2(n):
694
+ start = 2 ** (-(2 ** -(math.log2(n) - 3)))
695
+ ratio = start
696
+ return [start * ratio**i for i in range(n)]
697
+
698
+ if math.log2(n_heads).is_integer():
699
+ return get_slopes_power_of_2(
700
+ n_heads
701
+ ) # In the paper, we only train models that have 2^a heads for some a. This function has
702
+ else: # some good properties that only occur when the input is a power of 2. To maintain that even
703
+ closest_power_of_2 = 2 ** math.floor(
704
+ math.log2(n_heads)
705
+ ) # when the number of heads is not a power of 2, we use this workaround.
706
+ return (
707
+ get_slopes_power_of_2(closest_power_of_2)
708
+ + _get_alibi_head_slopes(2 * closest_power_of_2)[0::2][
709
+ : n_heads - closest_power_of_2
710
+ ]
711
+ )
712
+
713
+ context_position = torch.arange(size, device=device)[:, None]
714
+ memory_position = torch.arange(size, device=device)[None, :]
715
+ relative_position = torch.abs(memory_position - context_position)
716
+ # [n_heads, max_token_length, max_token_length]
717
+ relative_position = relative_position.unsqueeze(0).expand(n_heads, -1, -1)
718
+ slopes = torch.Tensor(_get_alibi_head_slopes(n_heads)).to(device) * -1
719
+ alibi = slopes.unsqueeze(1).unsqueeze(1) * relative_position
720
+ # [1, n_heads, max_token_length, max_token_length]
721
+ alibi = alibi.unsqueeze(0)
722
+ assert alibi.shape == torch.Size([1, n_heads, size, size])
723
+
724
+ self._current_alibi_size = size
725
+ return alibi
726
+
727
+ def forward(
728
+ self,
729
+ hidden_states: torch.Tensor,
730
+ attention_mask: Optional[torch.FloatTensor] = None,
731
+ head_mask: Optional[torch.FloatTensor] = None,
732
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
733
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
734
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
735
+ use_cache: Optional[bool] = None,
736
+ output_attentions: Optional[bool] = False,
737
+ output_hidden_states: Optional[bool] = False,
738
+ return_dict: Optional[bool] = True,
739
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
740
+ all_hidden_states = () if output_hidden_states else None
741
+ all_self_attentions = () if output_attentions else None
742
+ all_cross_attentions = (
743
+ () if output_attentions and self.config.add_cross_attention else None
744
+ )
745
+
746
+ # Add alibi matrix to extended_attention_mask
747
+ _, seqlen, _ = hidden_states.size()
748
+ if self._current_alibi_size < seqlen:
749
+ # Rebuild the alibi tensor when needed
750
+ warnings.warn(
751
+ f'Increasing alibi size from {self._current_alibi_size} to {seqlen}.'
752
+ )
753
+ self.register_buffer(
754
+ "alibi",
755
+ self.rebuild_alibi_tensor(size=seqlen, device=hidden_states.device).to(
756
+ hidden_states.dtype
757
+ ),
758
+ persistent=False,
759
+ )
760
+ elif self.alibi.device != hidden_states.device:
761
+ # Device catch-up
762
+ self.alibi = self.alibi.to(hidden_states.device)
763
+
764
+ alibi_bias = self.alibi[:, :, :seqlen, :seqlen]
765
+ if self.gradient_checkpointing and self.training:
766
+ if use_cache:
767
+ logger.warning_once(
768
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
769
+ )
770
+ use_cache = False
771
+
772
+ next_decoder_cache = () if use_cache else None
773
+ for i, layer_module in enumerate(self.layer):
774
+ if output_hidden_states:
775
+ all_hidden_states = all_hidden_states + (hidden_states,)
776
+
777
+ layer_head_mask = head_mask[i] if head_mask is not None else None
778
+ past_key_value = past_key_values[i] if past_key_values is not None else None
779
+
780
+ if self.gradient_checkpointing and self.training:
781
+
782
+ def create_custom_forward(module):
783
+ def custom_forward(*inputs):
784
+ return module(*inputs, past_key_value, output_attentions)
785
+
786
+ return custom_forward
787
+
788
+ layer_outputs = torch.utils.checkpoint.checkpoint(
789
+ create_custom_forward(layer_module),
790
+ hidden_states,
791
+ attention_mask,
792
+ layer_head_mask,
793
+ encoder_hidden_states,
794
+ encoder_attention_mask,
795
+ alibi_bias,
796
+ )
797
+ else:
798
+ layer_outputs = layer_module(
799
+ hidden_states,
800
+ attention_mask,
801
+ layer_head_mask,
802
+ encoder_hidden_states,
803
+ encoder_attention_mask,
804
+ alibi_bias,
805
+ past_key_value,
806
+ output_attentions,
807
+ )
808
+
809
+ hidden_states = layer_outputs[0]
810
+ if use_cache:
811
+ next_decoder_cache += (layer_outputs[-1],)
812
+ if output_attentions:
813
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
814
+ if self.config.add_cross_attention:
815
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
816
+
817
+ if output_hidden_states:
818
+ all_hidden_states = all_hidden_states + (hidden_states,)
819
+
820
+ if not return_dict:
821
+ return tuple(
822
+ v
823
+ for v in [
824
+ hidden_states,
825
+ next_decoder_cache,
826
+ all_hidden_states,
827
+ all_self_attentions,
828
+ all_cross_attentions,
829
+ ]
830
+ if v is not None
831
+ )
832
+ return BaseModelOutputWithPastAndCrossAttentions(
833
+ last_hidden_state=hidden_states,
834
+ past_key_values=next_decoder_cache,
835
+ hidden_states=all_hidden_states,
836
+ attentions=all_self_attentions,
837
+ cross_attentions=all_cross_attentions,
838
+ )
839
+
840
+
841
+ class JinaBertPooler(nn.Module):
842
+ def __init__(self, config):
843
+ super().__init__()
844
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
845
+ self.activation = nn.Tanh()
846
+
847
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
848
+ # We "pool" the model by simply taking the hidden state corresponding
849
+ # to the first token.
850
+ first_token_tensor = hidden_states[:, 0]
851
+ pooled_output = self.dense(first_token_tensor)
852
+ pooled_output = self.activation(pooled_output)
853
+ return pooled_output
854
+
855
+
856
+ class JinaBertPredictionHeadTransform(nn.Module):
857
+ def __init__(self, config):
858
+ super().__init__()
859
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
860
+ if isinstance(config.hidden_act, str):
861
+ self.transform_act_fn = ACT2FN[config.hidden_act]
862
+ else:
863
+ self.transform_act_fn = config.hidden_act
864
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
865
+
866
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
867
+ hidden_states = self.dense(hidden_states)
868
+ hidden_states = self.transform_act_fn(hidden_states)
869
+ hidden_states = self.LayerNorm(hidden_states)
870
+ return hidden_states
871
+
872
+
873
+ class JinaBertLMPredictionHead(nn.Module):
874
+ def __init__(self, config):
875
+ super().__init__()
876
+ self.transform = JinaBertPredictionHeadTransform(config)
877
+
878
+ # The output weights are the same as the input embeddings, but there is
879
+ # an output-only bias for each token.
880
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
881
+
882
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
883
+
884
+ # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
885
+ self.decoder.bias = self.bias
886
+
887
+ def forward(self, hidden_states):
888
+ hidden_states = self.transform(hidden_states)
889
+ hidden_states = self.decoder(hidden_states)
890
+ return hidden_states
891
+
892
+
893
+ class JinaBertOnlyMLMHead(nn.Module):
894
+ def __init__(self, config):
895
+ super().__init__()
896
+ self.predictions = JinaBertLMPredictionHead(config)
897
+
898
+ def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
899
+ prediction_scores = self.predictions(sequence_output)
900
+ return prediction_scores
901
+
902
+
903
+ class JinaBertOnlyNSPHead(nn.Module):
904
+ def __init__(self, config):
905
+ super().__init__()
906
+ self.seq_relationship = nn.Linear(config.hidden_size, 2)
907
+
908
+ def forward(self, pooled_output):
909
+ seq_relationship_score = self.seq_relationship(pooled_output)
910
+ return seq_relationship_score
911
+
912
+
913
+ class JinaBertPreTrainingHeads(nn.Module):
914
+ def __init__(self, config):
915
+ super().__init__()
916
+ self.predictions = JinaBertLMPredictionHead(config)
917
+ self.seq_relationship = nn.Linear(config.hidden_size, 2)
918
+
919
+ def forward(self, sequence_output, pooled_output):
920
+ prediction_scores = self.predictions(sequence_output)
921
+ seq_relationship_score = self.seq_relationship(pooled_output)
922
+ return prediction_scores, seq_relationship_score
923
+
924
+
925
+ class JinaBertPreTrainedModel(PreTrainedModel):
926
+ """
927
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
928
+ models.
929
+ """
930
+
931
+ config_class = JinaBertConfig
932
+ load_tf_weights = load_tf_weights_in_bert
933
+ base_model_prefix = "bert"
934
+ supports_gradient_checkpointing = True
935
+ _no_split_modules = ["JinaBertLayer"]
936
+
937
+ def _init_weights(self, module):
938
+ """Initialize the weights"""
939
+ if isinstance(module, nn.Linear):
940
+ # Slightly different from the TF version which uses truncated_normal for initialization
941
+ # cf https://github.com/pytorch/pytorch/pull/5617
942
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
943
+ if module.bias is not None:
944
+ module.bias.data.zero_()
945
+ elif isinstance(module, nn.Embedding):
946
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
947
+ if module.padding_idx is not None:
948
+ module.weight.data[module.padding_idx].zero_()
949
+ elif isinstance(module, nn.LayerNorm):
950
+ module.bias.data.zero_()
951
+ module.weight.data.fill_(1.0)
952
+
953
+ def _set_gradient_checkpointing(self, module, value=False):
954
+ if isinstance(module, JinaBertEncoder):
955
+ module.gradient_checkpointing = value
956
+
957
+
958
+ @dataclass
959
+ class JinaBertForPreTrainingOutput(ModelOutput):
960
+ """
961
+ Output type of [`BertForPreTraining`].
962
+
963
+ Args:
964
+ loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
965
+ Total loss as the sum of the masked language modeling loss and the next sequence prediction
966
+ (classification) loss.
967
+ prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
968
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
969
+ seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
970
+ Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
971
+ before SoftMax).
972
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
973
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
974
+ shape `(batch_size, sequence_length, hidden_size)`.
975
+
976
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
977
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
978
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
979
+ sequence_length)`.
980
+
981
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
982
+ heads.
983
+ """
984
+
985
+ loss: Optional[torch.FloatTensor] = None
986
+ prediction_logits: torch.FloatTensor = None
987
+ seq_relationship_logits: torch.FloatTensor = None
988
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
989
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
990
+
991
+
992
+ BERT_START_DOCSTRING = r"""
993
+
994
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
995
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
996
+ etc.)
997
+
998
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
999
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
1000
+ and behavior.
1001
+
1002
+ Parameters:
1003
+ config ([`BertConfig`]): Model configuration class with all the parameters of the model.
1004
+ Initializing with a config file does not load the weights associated with the model, only the
1005
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
1006
+ """
1007
+
1008
+ BERT_INPUTS_DOCSTRING = r"""
1009
+ Args:
1010
+ input_ids (`torch.LongTensor` of shape `({0})`):
1011
+ Indices of input sequence tokens in the vocabulary.
1012
+
1013
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1014
+ [`PreTrainedTokenizer.__call__`] for details.
1015
+
1016
+ [What are input IDs?](../glossary#input-ids)
1017
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
1018
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1019
+
1020
+ - 1 for tokens that are **not masked**,
1021
+ - 0 for tokens that are **masked**.
1022
+
1023
+ [What are attention masks?](../glossary#attention-mask)
1024
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
1025
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1026
+ 1]`:
1027
+
1028
+ - 0 corresponds to a *sentence A* token,
1029
+ - 1 corresponds to a *sentence B* token.
1030
+
1031
+ [What are token type IDs?](../glossary#token-type-ids)
1032
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
1033
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1034
+ config.max_position_embeddings - 1]`.
1035
+
1036
+ [What are position IDs?](../glossary#position-ids)
1037
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
1038
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
1039
+
1040
+ - 1 indicates the head is **not masked**,
1041
+ - 0 indicates the head is **masked**.
1042
+
1043
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
1044
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1045
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1046
+ model's internal embedding lookup matrix.
1047
+ output_attentions (`bool`, *optional*):
1048
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1049
+ tensors for more detail.
1050
+ output_hidden_states (`bool`, *optional*):
1051
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1052
+ more detail.
1053
+ return_dict (`bool`, *optional*):
1054
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1055
+ """
1056
+
1057
+
1058
+ @add_start_docstrings(
1059
+ "The bare Bert Model transformer outputting raw hidden-states without any specific head on top.",
1060
+ BERT_START_DOCSTRING,
1061
+ )
1062
+ class JinaBertModel(JinaBertPreTrainedModel):
1063
+ """
1064
+
1065
+ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
1066
+ cross-attention is added between the self-attention layers, following the architecture described in [Attention is
1067
+ all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
1068
+ Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
1069
+
1070
+ To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
1071
+ to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
1072
+ `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
1073
+ """
1074
+
1075
+ def __init__(self, config: JinaBertConfig, add_pooling_layer=True):
1076
+ super().__init__(config)
1077
+ self.config = config
1078
+
1079
+ self.emb_pooler = config.emb_pooler
1080
+ self._name_or_path = config._name_or_path
1081
+ if self.emb_pooler:
1082
+ from transformers import AutoTokenizer
1083
+
1084
+ self.tokenizer = AutoTokenizer.from_pretrained(config._name_or_path)
1085
+
1086
+ self.embeddings = JinaBertEmbeddings(config)
1087
+ self.encoder = JinaBertEncoder(config)
1088
+
1089
+ self.pooler = JinaBertPooler(config) if add_pooling_layer else None
1090
+
1091
+ # Initialize weights and apply final processing
1092
+ self.post_init()
1093
+
1094
+ @torch.inference_mode()
1095
+ def encode(
1096
+ self: 'JinaBertModel',
1097
+ sentences: Union[str, List[str]],
1098
+ batch_size: int = 32,
1099
+ show_progress_bar: Optional[bool] = None,
1100
+ output_value: str = 'sentence_embedding',
1101
+ convert_to_numpy: bool = True,
1102
+ convert_to_tensor: bool = False,
1103
+ device: Optional[torch.device] = None,
1104
+ normalize_embeddings: bool = False,
1105
+ **tokenizer_kwargs,
1106
+ ) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
1107
+ """
1108
+ Computes sentence embeddings
1109
+
1110
+ Args:
1111
+ sentences(`str` or `List[str]`):
1112
+ Sentence or sentences to be encoded
1113
+ batch_size(`int`, *optional*, defaults to 32):
1114
+ Batch size for the computation
1115
+ show_progress_bar(`bool`, *optional*, defaults to None):
1116
+ Show a progress bar when encoding sentences.
1117
+ If set to None, progress bar is only shown when `logger.level == logging.INFO` or `logger.level == logging.DEBUG`.
1118
+ output_value(`str`, *optional*, defaults to 'sentence_embedding'):
1119
+ Default sentence_embedding, to get sentence embeddings.
1120
+ Can be set to token_embeddings to get wordpiece token embeddings.
1121
+ Set to None, to get all output values
1122
+ convert_to_numpy(`bool`, *optional*, defaults to True):
1123
+ If true, the output is a list of numpy vectors.
1124
+ Else, it is a list of pytorch tensors.
1125
+ convert_to_tensor(`bool`, *optional*, defaults to False):
1126
+ If true, you get one large tensor as return.
1127
+ Overwrites any setting from convert_to_numpy
1128
+ device(`torch.device`, *optional*, defaults to None):
1129
+ Which torch.device to use for the computation
1130
+ normalize_embeddings(`bool`, *optional*, defaults to False):
1131
+ If set to true, returned vectors will have length 1. In that case, the faster dot-product (util.dot_score) instead of cosine similarity can be used.
1132
+ tokenizer_kwargs(`Dict[str, Any]`, *optional*, defaults to {}):
1133
+ Keyword arguments for the tokenizer
1134
+
1135
+ Returns:
1136
+ By default, a list of tensors is returned.
1137
+ If convert_to_tensor, a stacked tensor is returned.
1138
+ If convert_to_numpy, a numpy matrix is returned.
1139
+ """
1140
+ if not self.emb_pooler:
1141
+ warnings.warn("No emb_pooler specified, defaulting to mean pooling.")
1142
+ self.emb_pooler = 'mean'
1143
+ from transformers import AutoTokenizer
1144
+
1145
+ self.tokenizer = AutoTokenizer.from_pretrained(self._name_or_path)
1146
+ is_training = self.training
1147
+ self.eval()
1148
+
1149
+ if show_progress_bar is None:
1150
+ show_progress_bar = (
1151
+ logger.getEffectiveLevel() == logging.INFO
1152
+ or logger.getEffectiveLevel() == logging.DEBUG
1153
+ )
1154
+
1155
+ if convert_to_tensor:
1156
+ convert_to_numpy = False
1157
+
1158
+ if output_value != 'sentence_embedding':
1159
+ convert_to_tensor = False
1160
+ convert_to_numpy = False
1161
+
1162
+ input_was_string = False
1163
+ if isinstance(sentences, str) or not hasattr(sentences, '__len__'):
1164
+ sentences = [sentences]
1165
+ input_was_string = True
1166
+
1167
+ if device is not None:
1168
+ self.to(device)
1169
+
1170
+ # TODO: Maybe use better length heuristic?
1171
+ permutation = np.argsort([-len(i) for i in sentences])
1172
+ inverse_permutation = np.argsort(permutation)
1173
+ sentences = [sentences[idx] for idx in permutation]
1174
+
1175
+ tokenizer_kwargs['padding'] = tokenizer_kwargs.get('padding', True)
1176
+ tokenizer_kwargs['max_length'] = tokenizer_kwargs.get('max_length', 8192)
1177
+ tokenizer_kwargs['truncation'] = tokenizer_kwargs.get('truncation', True)
1178
+
1179
+ all_embeddings = []
1180
+
1181
+ if has_tqdm:
1182
+ range_iter = trange(
1183
+ 0,
1184
+ len(sentences),
1185
+ batch_size,
1186
+ desc="Encoding",
1187
+ disable=not show_progress_bar,
1188
+ )
1189
+ else:
1190
+ range_iter = range(0, len(sentences), batch_size)
1191
+
1192
+ for i in range_iter:
1193
+ encoded_input = self.tokenizer(
1194
+ sentences[i : i + batch_size],
1195
+ return_tensors='pt',
1196
+ **tokenizer_kwargs,
1197
+ ).to(self.device)
1198
+ token_embs = self.forward(**encoded_input)[0]
1199
+
1200
+ # Accumulate in fp32 to avoid overflow
1201
+ token_embs = token_embs.float()
1202
+
1203
+ if output_value == 'token_embeddings':
1204
+ raise NotImplementedError
1205
+ elif output_value is None:
1206
+ raise NotImplementedError
1207
+ else:
1208
+ embeddings = self.mean_pooling(
1209
+ token_embs, encoded_input['attention_mask']
1210
+ )
1211
+
1212
+ if normalize_embeddings:
1213
+ embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
1214
+
1215
+ if convert_to_numpy:
1216
+ embeddings = embeddings.cpu()
1217
+ all_embeddings.extend(embeddings)
1218
+
1219
+ all_embeddings = [all_embeddings[idx] for idx in inverse_permutation]
1220
+
1221
+ if convert_to_tensor:
1222
+ all_embeddings = torch.stack(all_embeddings)
1223
+ elif convert_to_numpy:
1224
+ all_embeddings = np.asarray([emb.numpy() for emb in all_embeddings])
1225
+
1226
+ if input_was_string:
1227
+ all_embeddings = all_embeddings[0]
1228
+
1229
+ self.train(is_training)
1230
+ return all_embeddings
1231
+
1232
+ def mean_pooling(
1233
+ self, token_embeddings: torch.Tensor, attention_mask: torch.Tensor
1234
+ ):
1235
+ input_mask_expanded = (
1236
+ attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
1237
+ )
1238
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
1239
+ input_mask_expanded.sum(1), min=1e-9
1240
+ )
1241
+
1242
+ def get_input_embeddings(self):
1243
+ return self.embeddings.word_embeddings
1244
+
1245
+ def set_input_embeddings(self, value):
1246
+ self.embeddings.word_embeddings = value
1247
+
1248
+ def _prune_heads(self, heads_to_prune):
1249
+ """
1250
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
1251
+ class PreTrainedModel
1252
+ """
1253
+ for layer, heads in heads_to_prune.items():
1254
+ self.encoder.layer[layer].attention.prune_heads(heads)
1255
+
1256
+ @add_start_docstrings_to_model_forward(
1257
+ BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")
1258
+ )
1259
+ @add_code_sample_docstrings(
1260
+ checkpoint=_CHECKPOINT_FOR_DOC,
1261
+ output_type=BaseModelOutputWithPoolingAndCrossAttentions,
1262
+ config_class=_CONFIG_FOR_DOC,
1263
+ )
1264
+ def forward(
1265
+ self,
1266
+ input_ids: Optional[torch.Tensor] = None,
1267
+ attention_mask: Optional[torch.Tensor] = None,
1268
+ token_type_ids: Optional[torch.Tensor] = None,
1269
+ position_ids: Optional[torch.Tensor] = None,
1270
+ head_mask: Optional[torch.Tensor] = None,
1271
+ inputs_embeds: Optional[torch.Tensor] = None,
1272
+ encoder_hidden_states: Optional[torch.Tensor] = None,
1273
+ encoder_attention_mask: Optional[torch.Tensor] = None,
1274
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1275
+ use_cache: Optional[bool] = None,
1276
+ output_attentions: Optional[bool] = None,
1277
+ output_hidden_states: Optional[bool] = None,
1278
+ return_dict: Optional[bool] = None,
1279
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
1280
+ r"""
1281
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1282
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
1283
+ the model is configured as a decoder.
1284
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
1285
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
1286
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
1287
+
1288
+ - 1 for tokens that are **not masked**,
1289
+ - 0 for tokens that are **masked**.
1290
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
1291
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
1292
+
1293
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
1294
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
1295
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
1296
+ use_cache (`bool`, *optional*):
1297
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1298
+ `past_key_values`).
1299
+ """
1300
+ output_attentions = (
1301
+ output_attentions
1302
+ if output_attentions is not None
1303
+ else self.config.output_attentions
1304
+ )
1305
+ output_hidden_states = (
1306
+ output_hidden_states
1307
+ if output_hidden_states is not None
1308
+ else self.config.output_hidden_states
1309
+ )
1310
+ return_dict = (
1311
+ return_dict if return_dict is not None else self.config.use_return_dict
1312
+ )
1313
+
1314
+ if self.config.is_decoder:
1315
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1316
+ else:
1317
+ use_cache = False
1318
+
1319
+ if input_ids is not None and inputs_embeds is not None:
1320
+ raise ValueError(
1321
+ "You cannot specify both input_ids and inputs_embeds at the same time"
1322
+ )
1323
+ elif input_ids is not None:
1324
+ # self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
1325
+ input_shape = input_ids.size()
1326
+ elif inputs_embeds is not None:
1327
+ input_shape = inputs_embeds.size()[:-1]
1328
+ else:
1329
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1330
+
1331
+ batch_size, seq_length = input_shape
1332
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1333
+
1334
+ # past_key_values_length
1335
+ past_key_values_length = (
1336
+ past_key_values[0][0].shape[2] if past_key_values is not None else 0
1337
+ )
1338
+
1339
+ if attention_mask is None:
1340
+ attention_mask = torch.ones(
1341
+ ((batch_size, seq_length + past_key_values_length)), device=device
1342
+ )
1343
+
1344
+ if token_type_ids is None:
1345
+ if hasattr(self.embeddings, "token_type_ids"):
1346
+ buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
1347
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(
1348
+ batch_size, seq_length
1349
+ )
1350
+ token_type_ids = buffered_token_type_ids_expanded
1351
+ else:
1352
+ token_type_ids = torch.zeros(
1353
+ input_shape, dtype=torch.long, device=device
1354
+ )
1355
+
1356
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
1357
+ # ourselves in which case we just need to make it broadcastable to all heads.
1358
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
1359
+ attention_mask, input_shape
1360
+ )
1361
+
1362
+ # If a 2D or 3D attention mask is provided for the cross-attention
1363
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
1364
+ if self.config.is_decoder and encoder_hidden_states is not None:
1365
+ (
1366
+ encoder_batch_size,
1367
+ encoder_sequence_length,
1368
+ _,
1369
+ ) = encoder_hidden_states.size()
1370
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
1371
+ if encoder_attention_mask is None:
1372
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
1373
+ encoder_extended_attention_mask = self.invert_attention_mask(
1374
+ encoder_attention_mask
1375
+ )
1376
+ else:
1377
+ encoder_extended_attention_mask = None
1378
+
1379
+ # Prepare head mask if needed
1380
+ # 1.0 in head_mask indicate we keep the head
1381
+ # attention_probs has shape bsz x n_heads x N x N
1382
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
1383
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
1384
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
1385
+
1386
+ embedding_output = self.embeddings(
1387
+ input_ids=input_ids,
1388
+ position_ids=position_ids,
1389
+ token_type_ids=token_type_ids,
1390
+ inputs_embeds=inputs_embeds,
1391
+ past_key_values_length=past_key_values_length,
1392
+ )
1393
+ encoder_outputs = self.encoder(
1394
+ embedding_output,
1395
+ attention_mask=extended_attention_mask,
1396
+ head_mask=head_mask,
1397
+ encoder_hidden_states=encoder_hidden_states,
1398
+ encoder_attention_mask=encoder_extended_attention_mask,
1399
+ past_key_values=past_key_values,
1400
+ use_cache=use_cache,
1401
+ output_attentions=output_attentions,
1402
+ output_hidden_states=output_hidden_states,
1403
+ return_dict=return_dict,
1404
+ )
1405
+ sequence_output = encoder_outputs[0]
1406
+ pooled_output = (
1407
+ self.pooler(sequence_output) if self.pooler is not None else None
1408
+ )
1409
+
1410
+ if not return_dict:
1411
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
1412
+
1413
+ return BaseModelOutputWithPoolingAndCrossAttentions(
1414
+ last_hidden_state=sequence_output,
1415
+ pooler_output=pooled_output,
1416
+ past_key_values=encoder_outputs.past_key_values,
1417
+ hidden_states=encoder_outputs.hidden_states,
1418
+ attentions=encoder_outputs.attentions,
1419
+ cross_attentions=encoder_outputs.cross_attentions,
1420
+ )
1421
+
1422
+
1423
+ @add_start_docstrings(
1424
+ """
1425
+ Bert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next
1426
+ sentence prediction (classification)` head.
1427
+ """,
1428
+ BERT_START_DOCSTRING,
1429
+ )
1430
+ class JinaBertForPreTraining(JinaBertPreTrainedModel):
1431
+ _tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
1432
+
1433
+ def __init__(self, config):
1434
+ super().__init__(config)
1435
+
1436
+ self.bert = JinaBertModel(config)
1437
+ self.cls = JinaBertPreTrainingHeads(config)
1438
+
1439
+ # Initialize weights and apply final processing
1440
+ self.post_init()
1441
+
1442
+ def get_output_embeddings(self):
1443
+ return self.cls.predictions.decoder
1444
+
1445
+ def set_output_embeddings(self, new_embeddings):
1446
+ self.cls.predictions.decoder = new_embeddings
1447
+
1448
+ @add_start_docstrings_to_model_forward(
1449
+ BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")
1450
+ )
1451
+ @replace_return_docstrings(
1452
+ output_type=JinaBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC
1453
+ )
1454
+ def forward(
1455
+ self,
1456
+ input_ids: Optional[torch.Tensor] = None,
1457
+ attention_mask: Optional[torch.Tensor] = None,
1458
+ token_type_ids: Optional[torch.Tensor] = None,
1459
+ position_ids: Optional[torch.Tensor] = None,
1460
+ head_mask: Optional[torch.Tensor] = None,
1461
+ inputs_embeds: Optional[torch.Tensor] = None,
1462
+ labels: Optional[torch.Tensor] = None,
1463
+ next_sentence_label: Optional[torch.Tensor] = None,
1464
+ output_attentions: Optional[bool] = None,
1465
+ output_hidden_states: Optional[bool] = None,
1466
+ return_dict: Optional[bool] = None,
1467
+ ) -> Union[Tuple[torch.Tensor], JinaBertForPreTrainingOutput]:
1468
+ r"""
1469
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1470
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
1471
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked),
1472
+ the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
1473
+ next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1474
+ Labels for computing the next sequence prediction (classification) loss. Input should be a sequence
1475
+ pair (see `input_ids` docstring) Indices should be in `[0, 1]`:
1476
+
1477
+ - 0 indicates sequence B is a continuation of sequence A,
1478
+ - 1 indicates sequence B is a random sequence.
1479
+ kwargs (`Dict[str, any]`, optional, defaults to *{}*):
1480
+ Used to hide legacy arguments that have been deprecated.
1481
+
1482
+ Returns:
1483
+ """
1484
+ return_dict = (
1485
+ return_dict if return_dict is not None else self.config.use_return_dict
1486
+ )
1487
+
1488
+ outputs = self.bert(
1489
+ input_ids,
1490
+ attention_mask=attention_mask,
1491
+ token_type_ids=token_type_ids,
1492
+ position_ids=position_ids,
1493
+ head_mask=head_mask,
1494
+ inputs_embeds=inputs_embeds,
1495
+ output_attentions=output_attentions,
1496
+ output_hidden_states=output_hidden_states,
1497
+ return_dict=return_dict,
1498
+ )
1499
+
1500
+ sequence_output, pooled_output = outputs[:2]
1501
+ prediction_scores, seq_relationship_score = self.cls(
1502
+ sequence_output, pooled_output
1503
+ )
1504
+
1505
+ total_loss = None
1506
+ if labels is not None and next_sentence_label is not None:
1507
+ loss_fct = CrossEntropyLoss()
1508
+ masked_lm_loss = loss_fct(
1509
+ prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)
1510
+ )
1511
+ next_sentence_loss = loss_fct(
1512
+ seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)
1513
+ )
1514
+ total_loss = masked_lm_loss + next_sentence_loss
1515
+
1516
+ if not return_dict:
1517
+ output = (prediction_scores, seq_relationship_score) + outputs[2:]
1518
+ return ((total_loss,) + output) if total_loss is not None else output
1519
+
1520
+ return JinaBertForPreTrainingOutput(
1521
+ loss=total_loss,
1522
+ prediction_logits=prediction_scores,
1523
+ seq_relationship_logits=seq_relationship_score,
1524
+ hidden_states=outputs.hidden_states,
1525
+ attentions=outputs.attentions,
1526
+ )
1527
+
1528
+
1529
+ @add_start_docstrings(
1530
+ """JinaBert Model with a `language modeling` head on top for CLM fine-tuning.""",
1531
+ BERT_START_DOCSTRING,
1532
+ )
1533
+ class JinaBertLMHeadModel(JinaBertPreTrainedModel):
1534
+ _tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
1535
+
1536
+ def __init__(self, config):
1537
+ super().__init__(config)
1538
+
1539
+ if not config.is_decoder:
1540
+ logger.warning(
1541
+ "If you want to use `JinaBertLMHeadModel` as a standalone, add `is_decoder=True.`"
1542
+ )
1543
+
1544
+ self.bert = JinaBertModel(config, add_pooling_layer=False)
1545
+ self.cls = JinaBertOnlyMLMHead(config)
1546
+
1547
+ # Initialize weights and apply final processing
1548
+ self.post_init()
1549
+
1550
+ def get_output_embeddings(self):
1551
+ return self.cls.predictions.decoder
1552
+
1553
+ def set_output_embeddings(self, new_embeddings):
1554
+ self.cls.predictions.decoder = new_embeddings
1555
+
1556
+ @add_start_docstrings_to_model_forward(
1557
+ BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")
1558
+ )
1559
+ @add_code_sample_docstrings(
1560
+ checkpoint=_CHECKPOINT_FOR_DOC,
1561
+ output_type=CausalLMOutputWithCrossAttentions,
1562
+ config_class=_CONFIG_FOR_DOC,
1563
+ )
1564
+ def forward(
1565
+ self,
1566
+ input_ids: Optional[torch.Tensor] = None,
1567
+ attention_mask: Optional[torch.Tensor] = None,
1568
+ token_type_ids: Optional[torch.Tensor] = None,
1569
+ position_ids: Optional[torch.Tensor] = None,
1570
+ head_mask: Optional[torch.Tensor] = None,
1571
+ inputs_embeds: Optional[torch.Tensor] = None,
1572
+ encoder_hidden_states: Optional[torch.Tensor] = None,
1573
+ encoder_attention_mask: Optional[torch.Tensor] = None,
1574
+ labels: Optional[torch.Tensor] = None,
1575
+ past_key_values: Optional[List[torch.Tensor]] = None,
1576
+ use_cache: Optional[bool] = None,
1577
+ output_attentions: Optional[bool] = None,
1578
+ output_hidden_states: Optional[bool] = None,
1579
+ return_dict: Optional[bool] = None,
1580
+ ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
1581
+ r"""
1582
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1583
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
1584
+ the model is configured as a decoder.
1585
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
1586
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
1587
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
1588
+
1589
+ - 1 for tokens that are **not masked**,
1590
+ - 0 for tokens that are **masked**.
1591
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1592
+ Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
1593
+ `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
1594
+ ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`
1595
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
1596
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
1597
+
1598
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
1599
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
1600
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
1601
+ use_cache (`bool`, *optional*):
1602
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1603
+ `past_key_values`).
1604
+ """
1605
+ return_dict = (
1606
+ return_dict if return_dict is not None else self.config.use_return_dict
1607
+ )
1608
+ if labels is not None:
1609
+ use_cache = False
1610
+
1611
+ outputs = self.bert(
1612
+ input_ids,
1613
+ attention_mask=attention_mask,
1614
+ token_type_ids=token_type_ids,
1615
+ position_ids=position_ids,
1616
+ head_mask=head_mask,
1617
+ inputs_embeds=inputs_embeds,
1618
+ encoder_hidden_states=encoder_hidden_states,
1619
+ encoder_attention_mask=encoder_attention_mask,
1620
+ past_key_values=past_key_values,
1621
+ use_cache=use_cache,
1622
+ output_attentions=output_attentions,
1623
+ output_hidden_states=output_hidden_states,
1624
+ return_dict=return_dict,
1625
+ )
1626
+
1627
+ sequence_output = outputs[0]
1628
+ prediction_scores = self.cls(sequence_output)
1629
+
1630
+ lm_loss = None
1631
+ if labels is not None:
1632
+ # we are doing next-token prediction; shift prediction scores and input ids by one
1633
+ shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
1634
+ labels = labels[:, 1:].contiguous()
1635
+ loss_fct = CrossEntropyLoss()
1636
+ lm_loss = loss_fct(
1637
+ shifted_prediction_scores.view(-1, self.config.vocab_size),
1638
+ labels.view(-1),
1639
+ )
1640
+
1641
+ if not return_dict:
1642
+ output = (prediction_scores,) + outputs[2:]
1643
+ return ((lm_loss,) + output) if lm_loss is not None else output
1644
+
1645
+ return CausalLMOutputWithCrossAttentions(
1646
+ loss=lm_loss,
1647
+ logits=prediction_scores,
1648
+ past_key_values=outputs.past_key_values,
1649
+ hidden_states=outputs.hidden_states,
1650
+ attentions=outputs.attentions,
1651
+ cross_attentions=outputs.cross_attentions,
1652
+ )
1653
+
1654
+ def prepare_inputs_for_generation(
1655
+ self,
1656
+ input_ids,
1657
+ past_key_values=None,
1658
+ attention_mask=None,
1659
+ use_cache=True,
1660
+ **model_kwargs,
1661
+ ):
1662
+ input_shape = input_ids.shape
1663
+ # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
1664
+ if attention_mask is None:
1665
+ attention_mask = input_ids.new_ones(input_shape)
1666
+
1667
+ # cut decoder_input_ids if past_key_values is used
1668
+ if past_key_values is not None:
1669
+ input_ids = input_ids[:, -1:]
1670
+
1671
+ return {
1672
+ "input_ids": input_ids,
1673
+ "attention_mask": attention_mask,
1674
+ "past_key_values": past_key_values,
1675
+ "use_cache": use_cache,
1676
+ }
1677
+
1678
+ def _reorder_cache(self, past_key_values, beam_idx):
1679
+ reordered_past = ()
1680
+ for layer_past in past_key_values:
1681
+ reordered_past += (
1682
+ tuple(
1683
+ past_state.index_select(0, beam_idx) for past_state in layer_past
1684
+ ),
1685
+ )
1686
+ return reordered_past
1687
+
1688
+
1689
+ @add_start_docstrings(
1690
+ """JinaBert Model with a `language modeling` head on top.""", BERT_START_DOCSTRING
1691
+ )
1692
+ class JinaBertForMaskedLM(JinaBertPreTrainedModel):
1693
+ _tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
1694
+
1695
+ def __init__(self, config):
1696
+ super().__init__(config)
1697
+
1698
+ if config.is_decoder:
1699
+ logger.warning(
1700
+ "If you want to use `JinaBertForMaskedLM` make sure `config.is_decoder=False` for "
1701
+ "bi-directional self-attention."
1702
+ )
1703
+
1704
+ self.bert = JinaBertModel(config, add_pooling_layer=False)
1705
+ self.cls = JinaBertOnlyMLMHead(config)
1706
+
1707
+ # Initialize weights and apply final processing
1708
+ self.post_init()
1709
+
1710
+ def get_output_embeddings(self):
1711
+ return self.cls.predictions.decoder
1712
+
1713
+ def set_output_embeddings(self, new_embeddings):
1714
+ self.cls.predictions.decoder = new_embeddings
1715
+
1716
+ @add_start_docstrings_to_model_forward(
1717
+ BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")
1718
+ )
1719
+ @add_code_sample_docstrings(
1720
+ checkpoint=_CHECKPOINT_FOR_DOC,
1721
+ output_type=MaskedLMOutput,
1722
+ config_class=_CONFIG_FOR_DOC,
1723
+ expected_output="'paris'",
1724
+ expected_loss=0.88,
1725
+ )
1726
+ def forward(
1727
+ self,
1728
+ input_ids: Optional[torch.Tensor] = None,
1729
+ attention_mask: Optional[torch.Tensor] = None,
1730
+ token_type_ids: Optional[torch.Tensor] = None,
1731
+ position_ids: Optional[torch.Tensor] = None,
1732
+ head_mask: Optional[torch.Tensor] = None,
1733
+ inputs_embeds: Optional[torch.Tensor] = None,
1734
+ encoder_hidden_states: Optional[torch.Tensor] = None,
1735
+ encoder_attention_mask: Optional[torch.Tensor] = None,
1736
+ labels: Optional[torch.Tensor] = None,
1737
+ output_attentions: Optional[bool] = None,
1738
+ output_hidden_states: Optional[bool] = None,
1739
+ return_dict: Optional[bool] = None,
1740
+ ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
1741
+ r"""
1742
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1743
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
1744
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
1745
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
1746
+ """
1747
+
1748
+ return_dict = (
1749
+ return_dict if return_dict is not None else self.config.use_return_dict
1750
+ )
1751
+
1752
+ outputs = self.bert(
1753
+ input_ids,
1754
+ attention_mask=attention_mask,
1755
+ token_type_ids=token_type_ids,
1756
+ position_ids=position_ids,
1757
+ head_mask=head_mask,
1758
+ inputs_embeds=inputs_embeds,
1759
+ encoder_hidden_states=encoder_hidden_states,
1760
+ encoder_attention_mask=encoder_attention_mask,
1761
+ output_attentions=output_attentions,
1762
+ output_hidden_states=output_hidden_states,
1763
+ return_dict=return_dict,
1764
+ )
1765
+
1766
+ sequence_output = outputs[0]
1767
+ prediction_scores = self.cls(sequence_output)
1768
+
1769
+ masked_lm_loss = None
1770
+ if labels is not None:
1771
+ loss_fct = CrossEntropyLoss() # -100 index = padding token
1772
+ masked_lm_loss = loss_fct(
1773
+ prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)
1774
+ )
1775
+
1776
+ if not return_dict:
1777
+ output = (prediction_scores,) + outputs[2:]
1778
+ return (
1779
+ ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
1780
+ )
1781
+
1782
+ return MaskedLMOutput(
1783
+ loss=masked_lm_loss,
1784
+ logits=prediction_scores,
1785
+ hidden_states=outputs.hidden_states,
1786
+ attentions=outputs.attentions,
1787
+ )
1788
+
1789
+ def prepare_inputs_for_generation(
1790
+ self, input_ids, attention_mask=None, **model_kwargs
1791
+ ):
1792
+ input_shape = input_ids.shape
1793
+ effective_batch_size = input_shape[0]
1794
+
1795
+ # add a dummy token
1796
+ if self.config.pad_token_id is None:
1797
+ raise ValueError("The PAD token should be defined for generation")
1798
+
1799
+ attention_mask = torch.cat(
1800
+ [attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))],
1801
+ dim=-1,
1802
+ )
1803
+ dummy_token = torch.full(
1804
+ (effective_batch_size, 1),
1805
+ self.config.pad_token_id,
1806
+ dtype=torch.long,
1807
+ device=input_ids.device,
1808
+ )
1809
+ input_ids = torch.cat([input_ids, dummy_token], dim=1)
1810
+
1811
+ return {"input_ids": input_ids, "attention_mask": attention_mask}
1812
+
1813
+
1814
+ @add_start_docstrings(
1815
+ """JinaBert Model with a `next sentence prediction (classification)` head on top.""",
1816
+ BERT_START_DOCSTRING,
1817
+ )
1818
+ class JinaBertForNextSentencePrediction(JinaBertPreTrainedModel):
1819
+ def __init__(self, config):
1820
+ super().__init__(config)
1821
+
1822
+ self.bert = JinaBertModel(config)
1823
+ self.cls = JinaBertOnlyNSPHead(config)
1824
+
1825
+ # Initialize weights and apply final processing
1826
+ self.post_init()
1827
+
1828
+ @add_start_docstrings_to_model_forward(
1829
+ BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")
1830
+ )
1831
+ @replace_return_docstrings(
1832
+ output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC
1833
+ )
1834
+ def forward(
1835
+ self,
1836
+ input_ids: Optional[torch.Tensor] = None,
1837
+ attention_mask: Optional[torch.Tensor] = None,
1838
+ token_type_ids: Optional[torch.Tensor] = None,
1839
+ position_ids: Optional[torch.Tensor] = None,
1840
+ head_mask: Optional[torch.Tensor] = None,
1841
+ inputs_embeds: Optional[torch.Tensor] = None,
1842
+ labels: Optional[torch.Tensor] = None,
1843
+ output_attentions: Optional[bool] = None,
1844
+ output_hidden_states: Optional[bool] = None,
1845
+ return_dict: Optional[bool] = None,
1846
+ **kwargs,
1847
+ ) -> Union[Tuple[torch.Tensor], NextSentencePredictorOutput]:
1848
+ r"""
1849
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1850
+ Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
1851
+ (see `input_ids` docstring). Indices should be in `[0, 1]`:
1852
+
1853
+ - 0 indicates sequence B is a continuation of sequence A,
1854
+ - 1 indicates sequence B is a random sequence.
1855
+
1856
+ Returns:
1857
+ """
1858
+
1859
+ if "next_sentence_label" in kwargs:
1860
+ warnings.warn(
1861
+ "The `next_sentence_label` argument is deprecated and will be removed in a future version, use"
1862
+ " `labels` instead.",
1863
+ FutureWarning,
1864
+ )
1865
+ labels = kwargs.pop("next_sentence_label")
1866
+
1867
+ return_dict = (
1868
+ return_dict if return_dict is not None else self.config.use_return_dict
1869
+ )
1870
+
1871
+ outputs = self.bert(
1872
+ input_ids,
1873
+ attention_mask=attention_mask,
1874
+ token_type_ids=token_type_ids,
1875
+ position_ids=position_ids,
1876
+ head_mask=head_mask,
1877
+ inputs_embeds=inputs_embeds,
1878
+ output_attentions=output_attentions,
1879
+ output_hidden_states=output_hidden_states,
1880
+ return_dict=return_dict,
1881
+ )
1882
+
1883
+ pooled_output = outputs[1]
1884
+
1885
+ seq_relationship_scores = self.cls(pooled_output)
1886
+
1887
+ next_sentence_loss = None
1888
+ if labels is not None:
1889
+ loss_fct = CrossEntropyLoss()
1890
+ next_sentence_loss = loss_fct(
1891
+ seq_relationship_scores.view(-1, 2), labels.view(-1)
1892
+ )
1893
+
1894
+ if not return_dict:
1895
+ output = (seq_relationship_scores,) + outputs[2:]
1896
+ return (
1897
+ ((next_sentence_loss,) + output)
1898
+ if next_sentence_loss is not None
1899
+ else output
1900
+ )
1901
+
1902
+ return NextSentencePredictorOutput(
1903
+ loss=next_sentence_loss,
1904
+ logits=seq_relationship_scores,
1905
+ hidden_states=outputs.hidden_states,
1906
+ attentions=outputs.attentions,
1907
+ )
1908
+
1909
+
1910
+ @add_start_docstrings(
1911
+ """
1912
+ JinaBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
1913
+ output) e.g. for GLUE tasks.
1914
+ """,
1915
+ BERT_START_DOCSTRING,
1916
+ )
1917
+ class JinaBertForSequenceClassification(JinaBertPreTrainedModel):
1918
+ def __init__(self, config):
1919
+ super().__init__(config)
1920
+ self.num_labels = config.num_labels
1921
+ self.config = config
1922
+
1923
+ self.bert = JinaBertModel(config)
1924
+ classifier_dropout = (
1925
+ config.classifier_dropout
1926
+ if config.classifier_dropout is not None
1927
+ else config.hidden_dropout_prob
1928
+ )
1929
+ self.dropout = nn.Dropout(classifier_dropout)
1930
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1931
+
1932
+ # Initialize weights and apply final processing
1933
+ self.post_init()
1934
+
1935
+ @add_start_docstrings_to_model_forward(
1936
+ BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")
1937
+ )
1938
+ @add_code_sample_docstrings(
1939
+ checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION,
1940
+ output_type=SequenceClassifierOutput,
1941
+ config_class=_CONFIG_FOR_DOC,
1942
+ expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
1943
+ expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
1944
+ )
1945
+ def forward(
1946
+ self,
1947
+ input_ids: Optional[torch.Tensor] = None,
1948
+ attention_mask: Optional[torch.Tensor] = None,
1949
+ token_type_ids: Optional[torch.Tensor] = None,
1950
+ position_ids: Optional[torch.Tensor] = None,
1951
+ head_mask: Optional[torch.Tensor] = None,
1952
+ inputs_embeds: Optional[torch.Tensor] = None,
1953
+ labels: Optional[torch.Tensor] = None,
1954
+ output_attentions: Optional[bool] = None,
1955
+ output_hidden_states: Optional[bool] = None,
1956
+ return_dict: Optional[bool] = None,
1957
+ ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
1958
+ r"""
1959
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1960
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1961
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1962
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1963
+ """
1964
+ return_dict = (
1965
+ return_dict if return_dict is not None else self.config.use_return_dict
1966
+ )
1967
+
1968
+ outputs = self.bert(
1969
+ input_ids,
1970
+ attention_mask=attention_mask,
1971
+ token_type_ids=token_type_ids,
1972
+ position_ids=position_ids,
1973
+ head_mask=head_mask,
1974
+ inputs_embeds=inputs_embeds,
1975
+ output_attentions=output_attentions,
1976
+ output_hidden_states=output_hidden_states,
1977
+ return_dict=return_dict,
1978
+ )
1979
+
1980
+ pooled_output = outputs[1]
1981
+
1982
+ pooled_output = self.dropout(pooled_output)
1983
+ logits = self.classifier(pooled_output)
1984
+
1985
+ loss = None
1986
+ if labels is not None:
1987
+ if self.config.problem_type is None:
1988
+ if self.num_labels == 1:
1989
+ self.config.problem_type = "regression"
1990
+ elif self.num_labels > 1 and (
1991
+ labels.dtype == torch.long or labels.dtype == torch.int
1992
+ ):
1993
+ self.config.problem_type = "single_label_classification"
1994
+ else:
1995
+ self.config.problem_type = "multi_label_classification"
1996
+
1997
+ if self.config.problem_type == "regression":
1998
+ loss_fct = MSELoss()
1999
+ if self.num_labels == 1:
2000
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
2001
+ else:
2002
+ loss = loss_fct(logits, labels)
2003
+ elif self.config.problem_type == "single_label_classification":
2004
+ loss_fct = CrossEntropyLoss()
2005
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
2006
+ elif self.config.problem_type == "multi_label_classification":
2007
+ loss_fct = BCEWithLogitsLoss()
2008
+ loss = loss_fct(logits, labels)
2009
+ if not return_dict:
2010
+ output = (logits,) + outputs[2:]
2011
+ return ((loss,) + output) if loss is not None else output
2012
+
2013
+ return SequenceClassifierOutput(
2014
+ loss=loss,
2015
+ logits=logits,
2016
+ hidden_states=outputs.hidden_states,
2017
+ attentions=outputs.attentions,
2018
+ )
2019
+
2020
+
2021
+ @add_start_docstrings(
2022
+ """
2023
+ JinaBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
2024
+ softmax) e.g. for RocStories/SWAG tasks.
2025
+ """,
2026
+ BERT_START_DOCSTRING,
2027
+ )
2028
+ class JinaBertForMultipleChoice(JinaBertPreTrainedModel):
2029
+ def __init__(self, config):
2030
+ super().__init__(config)
2031
+
2032
+ self.bert = JinaBertModel(config)
2033
+ classifier_dropout = (
2034
+ config.classifier_dropout
2035
+ if config.classifier_dropout is not None
2036
+ else config.hidden_dropout_prob
2037
+ )
2038
+ self.dropout = nn.Dropout(classifier_dropout)
2039
+ self.classifier = nn.Linear(config.hidden_size, 1)
2040
+
2041
+ # Initialize weights and apply final processing
2042
+ self.post_init()
2043
+
2044
+ @add_start_docstrings_to_model_forward(
2045
+ BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
2046
+ )
2047
+ @add_code_sample_docstrings(
2048
+ checkpoint=_CHECKPOINT_FOR_DOC,
2049
+ output_type=MultipleChoiceModelOutput,
2050
+ config_class=_CONFIG_FOR_DOC,
2051
+ )
2052
+ def forward(
2053
+ self,
2054
+ input_ids: Optional[torch.Tensor] = None,
2055
+ attention_mask: Optional[torch.Tensor] = None,
2056
+ token_type_ids: Optional[torch.Tensor] = None,
2057
+ position_ids: Optional[torch.Tensor] = None,
2058
+ head_mask: Optional[torch.Tensor] = None,
2059
+ inputs_embeds: Optional[torch.Tensor] = None,
2060
+ labels: Optional[torch.Tensor] = None,
2061
+ output_attentions: Optional[bool] = None,
2062
+ output_hidden_states: Optional[bool] = None,
2063
+ return_dict: Optional[bool] = None,
2064
+ ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
2065
+ r"""
2066
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
2067
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
2068
+ num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
2069
+ `input_ids` above)
2070
+ """
2071
+ return_dict = (
2072
+ return_dict if return_dict is not None else self.config.use_return_dict
2073
+ )
2074
+ num_choices = (
2075
+ input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
2076
+ )
2077
+
2078
+ input_ids = (
2079
+ input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
2080
+ )
2081
+ attention_mask = (
2082
+ attention_mask.view(-1, attention_mask.size(-1))
2083
+ if attention_mask is not None
2084
+ else None
2085
+ )
2086
+ token_type_ids = (
2087
+ token_type_ids.view(-1, token_type_ids.size(-1))
2088
+ if token_type_ids is not None
2089
+ else None
2090
+ )
2091
+ position_ids = (
2092
+ position_ids.view(-1, position_ids.size(-1))
2093
+ if position_ids is not None
2094
+ else None
2095
+ )
2096
+ inputs_embeds = (
2097
+ inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
2098
+ if inputs_embeds is not None
2099
+ else None
2100
+ )
2101
+
2102
+ outputs = self.bert(
2103
+ input_ids,
2104
+ attention_mask=attention_mask,
2105
+ token_type_ids=token_type_ids,
2106
+ position_ids=position_ids,
2107
+ head_mask=head_mask,
2108
+ inputs_embeds=inputs_embeds,
2109
+ output_attentions=output_attentions,
2110
+ output_hidden_states=output_hidden_states,
2111
+ return_dict=return_dict,
2112
+ )
2113
+
2114
+ pooled_output = outputs[1]
2115
+
2116
+ pooled_output = self.dropout(pooled_output)
2117
+ logits = self.classifier(pooled_output)
2118
+ reshaped_logits = logits.view(-1, num_choices)
2119
+
2120
+ loss = None
2121
+ if labels is not None:
2122
+ loss_fct = CrossEntropyLoss()
2123
+ loss = loss_fct(reshaped_logits, labels)
2124
+
2125
+ if not return_dict:
2126
+ output = (reshaped_logits,) + outputs[2:]
2127
+ return ((loss,) + output) if loss is not None else output
2128
+
2129
+ return MultipleChoiceModelOutput(
2130
+ loss=loss,
2131
+ logits=reshaped_logits,
2132
+ hidden_states=outputs.hidden_states,
2133
+ attentions=outputs.attentions,
2134
+ )
2135
+
2136
+
2137
+ @add_start_docstrings(
2138
+ """
2139
+ JinaBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
2140
+ Named-Entity-Recognition (NER) tasks.
2141
+ """,
2142
+ BERT_START_DOCSTRING,
2143
+ )
2144
+ class JinaBertForTokenClassification(JinaBertPreTrainedModel):
2145
+ def __init__(self, config):
2146
+ super().__init__(config)
2147
+ self.num_labels = config.num_labels
2148
+
2149
+ self.bert = JinaBertModel(config, add_pooling_layer=False)
2150
+ classifier_dropout = (
2151
+ config.classifier_dropout
2152
+ if config.classifier_dropout is not None
2153
+ else config.hidden_dropout_prob
2154
+ )
2155
+ self.dropout = nn.Dropout(classifier_dropout)
2156
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
2157
+
2158
+ # Initialize weights and apply final processing
2159
+ self.post_init()
2160
+
2161
+ @add_start_docstrings_to_model_forward(
2162
+ BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")
2163
+ )
2164
+ @add_code_sample_docstrings(
2165
+ checkpoint=_CHECKPOINT_FOR_TOKEN_CLASSIFICATION,
2166
+ output_type=TokenClassifierOutput,
2167
+ config_class=_CONFIG_FOR_DOC,
2168
+ expected_output=_TOKEN_CLASS_EXPECTED_OUTPUT,
2169
+ expected_loss=_TOKEN_CLASS_EXPECTED_LOSS,
2170
+ )
2171
+ def forward(
2172
+ self,
2173
+ input_ids: Optional[torch.Tensor] = None,
2174
+ attention_mask: Optional[torch.Tensor] = None,
2175
+ token_type_ids: Optional[torch.Tensor] = None,
2176
+ position_ids: Optional[torch.Tensor] = None,
2177
+ head_mask: Optional[torch.Tensor] = None,
2178
+ inputs_embeds: Optional[torch.Tensor] = None,
2179
+ labels: Optional[torch.Tensor] = None,
2180
+ output_attentions: Optional[bool] = None,
2181
+ output_hidden_states: Optional[bool] = None,
2182
+ return_dict: Optional[bool] = None,
2183
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
2184
+ r"""
2185
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
2186
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
2187
+ """
2188
+ return_dict = (
2189
+ return_dict if return_dict is not None else self.config.use_return_dict
2190
+ )
2191
+
2192
+ outputs = self.bert(
2193
+ input_ids,
2194
+ attention_mask=attention_mask,
2195
+ token_type_ids=token_type_ids,
2196
+ position_ids=position_ids,
2197
+ head_mask=head_mask,
2198
+ inputs_embeds=inputs_embeds,
2199
+ output_attentions=output_attentions,
2200
+ output_hidden_states=output_hidden_states,
2201
+ return_dict=return_dict,
2202
+ )
2203
+
2204
+ sequence_output = outputs[0]
2205
+
2206
+ sequence_output = self.dropout(sequence_output)
2207
+ logits = self.classifier(sequence_output)
2208
+
2209
+ loss = None
2210
+ if labels is not None:
2211
+ loss_fct = CrossEntropyLoss()
2212
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
2213
+
2214
+ if not return_dict:
2215
+ output = (logits,) + outputs[2:]
2216
+ return ((loss,) + output) if loss is not None else output
2217
+
2218
+ return TokenClassifierOutput(
2219
+ loss=loss,
2220
+ logits=logits,
2221
+ hidden_states=outputs.hidden_states,
2222
+ attentions=outputs.attentions,
2223
+ )
2224
+
2225
+
2226
+ @add_start_docstrings(
2227
+ """
2228
+ JinaBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
2229
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
2230
+ """,
2231
+ BERT_START_DOCSTRING,
2232
+ )
2233
+ class JinaBertForQuestionAnswering(JinaBertPreTrainedModel):
2234
+ def __init__(self, config):
2235
+ super().__init__(config)
2236
+ self.num_labels = config.num_labels
2237
+
2238
+ self.bert = JinaBertModel(config, add_pooling_layer=False)
2239
+ self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
2240
+
2241
+ # Initialize weights and apply final processing
2242
+ self.post_init()
2243
+
2244
+ @add_start_docstrings_to_model_forward(
2245
+ BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")
2246
+ )
2247
+ @add_code_sample_docstrings(
2248
+ checkpoint=_CHECKPOINT_FOR_QA,
2249
+ output_type=QuestionAnsweringModelOutput,
2250
+ config_class=_CONFIG_FOR_DOC,
2251
+ qa_target_start_index=_QA_TARGET_START_INDEX,
2252
+ qa_target_end_index=_QA_TARGET_END_INDEX,
2253
+ expected_output=_QA_EXPECTED_OUTPUT,
2254
+ expected_loss=_QA_EXPECTED_LOSS,
2255
+ )
2256
+ def forward(
2257
+ self,
2258
+ input_ids: Optional[torch.Tensor] = None,
2259
+ attention_mask: Optional[torch.Tensor] = None,
2260
+ token_type_ids: Optional[torch.Tensor] = None,
2261
+ position_ids: Optional[torch.Tensor] = None,
2262
+ head_mask: Optional[torch.Tensor] = None,
2263
+ inputs_embeds: Optional[torch.Tensor] = None,
2264
+ start_positions: Optional[torch.Tensor] = None,
2265
+ end_positions: Optional[torch.Tensor] = None,
2266
+ output_attentions: Optional[bool] = None,
2267
+ output_hidden_states: Optional[bool] = None,
2268
+ return_dict: Optional[bool] = None,
2269
+ ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
2270
+ r"""
2271
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
2272
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
2273
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
2274
+ are not taken into account for computing the loss.
2275
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
2276
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
2277
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
2278
+ are not taken into account for computing the loss.
2279
+ """
2280
+ return_dict = (
2281
+ return_dict if return_dict is not None else self.config.use_return_dict
2282
+ )
2283
+
2284
+ outputs = self.bert(
2285
+ input_ids,
2286
+ attention_mask=attention_mask,
2287
+ token_type_ids=token_type_ids,
2288
+ position_ids=position_ids,
2289
+ head_mask=head_mask,
2290
+ inputs_embeds=inputs_embeds,
2291
+ output_attentions=output_attentions,
2292
+ output_hidden_states=output_hidden_states,
2293
+ return_dict=return_dict,
2294
+ )
2295
+
2296
+ sequence_output = outputs[0]
2297
+
2298
+ logits = self.qa_outputs(sequence_output)
2299
+ start_logits, end_logits = logits.split(1, dim=-1)
2300
+ start_logits = start_logits.squeeze(-1).contiguous()
2301
+ end_logits = end_logits.squeeze(-1).contiguous()
2302
+
2303
+ total_loss = None
2304
+ if start_positions is not None and end_positions is not None:
2305
+ # If we are on multi-GPU, split add a dimension
2306
+ if len(start_positions.size()) > 1:
2307
+ start_positions = start_positions.squeeze(-1)
2308
+ if len(end_positions.size()) > 1:
2309
+ end_positions = end_positions.squeeze(-1)
2310
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
2311
+ ignored_index = start_logits.size(1)
2312
+ start_positions = start_positions.clamp(0, ignored_index)
2313
+ end_positions = end_positions.clamp(0, ignored_index)
2314
+
2315
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
2316
+ start_loss = loss_fct(start_logits, start_positions)
2317
+ end_loss = loss_fct(end_logits, end_positions)
2318
+ total_loss = (start_loss + end_loss) / 2
2319
+
2320
+ if not return_dict:
2321
+ output = (start_logits, end_logits) + outputs[2:]
2322
+ return ((total_loss,) + output) if total_loss is not None else output
2323
+
2324
+ return QuestionAnsweringModelOutput(
2325
+ loss=total_loss,
2326
+ start_logits=start_logits,
2327
+ end_logits=end_logits,
2328
+ hidden_states=outputs.hidden_states,
2329
+ attentions=outputs.attentions,
2330
+ )
2331
+
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "clean_up_tokenization_spaces": true,
3
+ "cls_token": "[CLS]",
4
+ "do_basic_tokenize": true,
5
+ "do_lower_case": true,
6
+ "mask_token": "[MASK]",
7
+ "model_max_length": 2147483648,
8
+ "never_split": null,
9
+ "pad_token": "[PAD]",
10
+ "sep_token": "[SEP]",
11
+ "strip_accents": null,
12
+ "tokenize_chinese_chars": true,
13
+ "tokenizer_class": "BertTokenizer",
14
+ "unk_token": "[UNK]"
15
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff