--- license: apache-2.0 tags: - image-classification - vision - generated_from_trainer datasets: - cifar10 metrics: - accuracy model-index: - name: cifar10_outputs results: - task: name: Image Classification type: image-classification dataset: name: cifar10 type: cifar10 args: plain_text metrics: - name: Accuracy type: accuracy value: 0.991421568627451 --- # cifar10_outputs This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the cifar10 dataset. It achieves the following results on the evaluation set: - Loss: 0.0806 - Accuracy: 0.9914 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 17 - eval_batch_size: 17 - seed: 1337 - distributed_type: IPU - gradient_accumulation_steps: 128 - total_train_batch_size: 8704 - total_eval_batch_size: 272 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.25 - num_epochs: 100.0 - training precision: Mixed Precision ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cpu - Datasets 2.3.3.dev0 - Tokenizers 0.12.1