jimypbr commited on
Commit
0f4baa3
·
1 Parent(s): 882b536

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +77 -0
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - image-classification
5
+ - vision
6
+ - generated_from_trainer
7
+ datasets:
8
+ - cifar10
9
+ metrics:
10
+ - accuracy
11
+ model-index:
12
+ - name: cifar10_outputs
13
+ results:
14
+ - task:
15
+ name: Image Classification
16
+ type: image-classification
17
+ dataset:
18
+ name: cifar10
19
+ type: cifar10
20
+ args: plain_text
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.991421568627451
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # cifar10_outputs
31
+
32
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the cifar10 dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.0806
35
+ - Accuracy: 0.9914
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 0.0001
55
+ - train_batch_size: 17
56
+ - eval_batch_size: 17
57
+ - seed: 1337
58
+ - distributed_type: IPU
59
+ - gradient_accumulation_steps: 128
60
+ - total_train_batch_size: 8704
61
+ - total_eval_batch_size: 272
62
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
+ - lr_scheduler_type: cosine
64
+ - lr_scheduler_warmup_ratio: 0.25
65
+ - num_epochs: 100.0
66
+ - training precision: Mixed Precision
67
+
68
+ ### Training results
69
+
70
+
71
+
72
+ ### Framework versions
73
+
74
+ - Transformers 4.18.0
75
+ - Pytorch 1.10.0+cpu
76
+ - Datasets 2.3.3.dev0
77
+ - Tokenizers 0.12.1