import torch import torch.nn as nn import math from torch.nn import functional as F #-------------------------------------- ############# PUBLIC MODEL CLASS ################ #---------------------------------------- class PrefixEncoder(torch.nn.Module): def __init__(self,config): super(PrefixEncoder,self).__init__() self.config=config self.device=config.device self.dtype=config.dtype self.num_virtual_tokens=config.num_virtual_tokens #self.embedding=torch.nn.Embedding(config.num_virtual_tokens,config.token_dim,device=config.device,dtype=config.dtype) self.token_dim=config.token_dim self.encoder_hidden_size=config.encoder_hidden_size self.num_layers=config.num_layers """ self.transformer=torch.nn.Sequential( torch.nn.Linear(self.token_dim,self.encoder_hidden_size,device=self.device,dtype=self.dtype), torch.nn.Tanh(), torch.nn.Linear(self.encoder_hidden_size,self.num_layers*2*self.token_dim,device=self.device,dtype=self.dtype), ) """ self.prefix_embedding=nn.Parameter(torch.zeros(1,self.num_virtual_tokens,self.token_dim*2*self.num_layers,device=self.device,dtype=self.dtype),requires_grad=False) def forward(self,batch_size): """ input_ids=input_ids.unsqueeze(0).expand(batch_size,self.num_virtual_tokens) prefix_embedding=self.embedding(input_ids) prefix_embedding=self.transformer(prefix_embedding) self.register_parameter("prefix_embedding",nn.Parameter(prefix_embedding,requires_grad=False)) """ #prefix_embedding=self.prefix_embedding.expand(b,self.num_virtual_tokens,self.token_dim*2*self.num_layers) #prefix_embedding=prefix_embedding.contiguous().view(2,self.num_layers,prefix_embedding.shape[0],self.num_virtual_tokens,self.token_dim) prefix_embedding=self.prefix_embedding.expand(batch_size,self.num_virtual_tokens,self.token_dim*2*self.num_layers) prefix_embedding=prefix_embedding.reshape(batch_size,self.num_virtual_tokens,self.num_layers,2,self.token_dim) prefix_embedding=prefix_embedding.permute(3,2,0,1,4) k,v=prefix_embedding.chunk(2,dim=0) return (k.squeeze(0),v.squeeze(0)) class MultiHeadAttention(nn.Module): def __init__(self,config): super(MultiHeadAttention,self).__init__() self.hidden_size=config.hidden_size self.num_heads=config.num_heads self.head_size=self.hidden_size//self.num_heads #nn.Parameter包含weight和bias可训练参数 self.in_proj_weight=nn.Parameter(torch.zeros(3*config.hidden_size,config.hidden_size,device=config.device,dtype=config.dtype),requires_grad=True) self.in_proj_bias=nn.Parameter(torch.zeros(3*config.hidden_size,device=config.device,dtype=config.dtype),requires_grad=True) #self.q_linear=nn.Linear(self.hidden_size,self.hidden_size,bias=True,device=config.device) #self.k_linear=nn.Linear(self.hidden_size,self.hidden_size,bias=True,device=config.device) #self.v_linear=nn.Linear(self.hidden_size,self.hidden_size,bias=True,device=config.device) self.out_proj=nn.Linear(self.hidden_size,self.hidden_size,bias=True,device=config.device,dtype=config.dtype) def forward(self,hidden_state,prefix_k=None,prefix_v=None): b,n,c=hidden_state.shape #q=self.q_linear(hidden_state).view(b,n,self.num_heads,self.head_size).permute(0,2,1,3) #k=self.k_linear(hidden_state).view(b,n,self.num_heads,self.head_size).permute(0,2,3,1) #v=self.v_linear(hidden_state).view(b,n,self.num_heads,self.head_size).permute(0,2,1,3) q,k,v=(torch.matmul(hidden_state,self.in_proj_weight.T)+self.in_proj_bias.expand(b,n,-1)).chunk(3,dim=-1) if prefix_k is not None and prefix_v is not None: #将前缀插入到序列之前 k=torch.cat((prefix_k,k),dim=1) #print("model k :",k[:,0,0]) v=torch.cat((prefix_v,v),dim=1) bk,nk,hk=k.shape bq,nq,hq=q.shape q=q.view(bq,nq,self.num_heads,self.head_size).permute(0,2,1,3) k=k.view(bk,nk,self.num_heads,self.head_size).permute(0,2,1,3) v=v.view(bk,nk,self.num_heads,self.head_size).permute(0,2,1,3) attention_logits=F.scaled_dot_product_attention(q, k, v) attention_logits=attention_logits.permute(0,2,1,3).contiguous().view(bk,nq,self.hidden_size) attention_output=self.out_proj(attention_logits) return attention_output class QuickGELU(nn.Module): def __init__(self): super(QuickGELU,self).__init__() def forward(self,x): old_dtype=x.dtype x=x.to(torch.float32) return (x*torch.sigmoid(1.702*x)).to(old_dtype) class MLP(nn.Module): def __init__(self,config): super(MLP,self).__init__() self.hidden_size=config.hidden_size self.c_fc=nn.Linear(self.hidden_size,4*self.hidden_size,device=config.device,bias=True,dtype=config.dtype) self.gelu=QuickGELU() self.c_proj=nn.Linear(self.hidden_size*4,self.hidden_size,device=config.device,bias=True,dtype=config.dtype) def forward(self,hidden_state): hidden_state=self.c_fc(hidden_state) hidden_state=self.gelu(hidden_state) hidden_state=self.c_proj(hidden_state) return hidden_state class ResidualAttentionBlock(nn.Module): def __init__(self,config): super(ResidualAttentionBlock,self).__init__() self.ln_1=nn.LayerNorm(config.hidden_size,eps=config.norm_eps,elementwise_affine=True,device=config.device,dtype=config.dtype) self.ln_2=nn.LayerNorm(config.hidden_size,eps=config.norm_eps,elementwise_affine=True,device=config.device,dtype=config.dtype) #self.attn=nn.MultiheadAttention(config.hidden_size,config.num_heads,device=config.device,dtype=config.dtype) self.attn=MultiHeadAttention(config) self.mlp=MLP(config) def forward(self,hidden_state,prefix_k=None,prefix_v=None): residual=hidden_state hidden_state=self.ln_1(hidden_state) hidden_state=self.attn(hidden_state,prefix_k,prefix_v) hidden_state=residual+hidden_state residual=hidden_state hidden_state=self.ln_2(hidden_state) hidden_state=self.mlp(hidden_state) hidden_state=residual+hidden_state return hidden_state class Transformer(nn.Module): def __init__(self,config): super(Transformer,self).__init__() self.resblocks=nn.ModuleList([ResidualAttentionBlock(config) for _ in range(config.num_layers)]) self.prefix=PrefixEncoder(config) #prefix_tokens=torch.arange(0,config.num_virtual_tokens,device=config.device,dtype=torch.long) #self.register_buffer("prefix_tokens",prefix_tokens) def forward(self,hidden_state): b,n,h=hidden_state.shape prefix_k,prefix_v=self.prefix(b) for index,resblock in enumerate(self.resblocks): hidden_state=resblock(hidden_state,prefix_k[index],prefix_v[index]) return hidden_state #----------------------------------------- ############### TEXT ECONDER ----> transformer ################ #----------------------------------------- class TextEncoder_Config: def __init__(self,vocab_size,max_position_embeddings,hidden_size,num_layers,num_heads,device,dtype): self.vocab_size=vocab_size self.max_position_embeddings=max_position_embeddings self.hidden_size=hidden_size self.num_layers=num_layers self.num_heads=num_heads self.device=device self.dtype=dtype self.norm_eps=1e-5 self.num_virtual_tokens=20 self.token_dim=hidden_size self.encoder_hidden_size=hidden_size textencoder_config=TextEncoder_Config( vocab_size=49408, max_position_embeddings=77, hidden_size=512, num_layers=12, num_heads=8, device=torch.device('cuda:0'), dtype=torch.float16 ) Encoder_model=Transformer(textencoder_config) #-------------------------------------------- ################### VISION TRANSFORMER ################## #-------------------------------------------- def position_embedding(x,position_ids): hidden_size=x.size(2) seq_len=x.size(1) div_term=torch.exp(torch.arange(0,hidden_size,2,device=x.device).float()*(-math.log(10000.0)/hidden_size)) positional_encoding=torch.zeros(seq_len,hidden_size,device=x.device) positional_encoding[:,0::2]=torch.sin(position_ids.float()[:,None]*div_term) positional_encoding[:,1::2]=torch.cos(position_ids.float()[:,None]*div_term) positional_encoding=positional_encoding.unsqueeze(0) return positional_encoding class VisionTransformer(nn.Module): def __init__(self,config): super(VisionTransformer,self).__init__() self.image_channel=config.image_channel self.hidden_size=config.hidden_size self.norm_eps=config.norm_eps self.patch_size=config.patch_size self.output_dim=config.output_dim self.dtype=config.dtype self.num_virtual_tokens=config.num_virtual_tokens if hasattr(config,"num_virtual_tokens") else None self.conv1=nn.Conv2d(self.image_channel,self.hidden_size,self.patch_size,stride=self.patch_size,bias=False,device=config.device,dtype=config.dtype) self.ln_pre=nn.LayerNorm(self.hidden_size,eps=self.norm_eps,elementwise_affine=True,device=config.device,dtype=config.dtype) self.transformer=Transformer(config) #self.position_ids=torch.arange(config.num_patches+1,dtype=torch.long,device=config.device) #self.position_embeddings=nn.Parameter(torch.zeros(1,config.num_patches+1,config.hidden_size)) #nn.init.normal_(self.position_embeddings) #clsToken,用于图像分类任务 #self.cls_token=nn.Parameter(torch.zeros(1,1,config.hidden_size,device=config.device)) #分类token不是可训练参数 self.class_embedding=nn.Parameter(torch.zeros(config.hidden_size,device=config.device),requires_grad=True) #很明显这里的position_embedding也是一个可学习参数 self.positional_embedding=nn.Parameter(torch.zeros(config.num_patches+1,config.hidden_size,device=config.device),requires_grad=True) #可训练参数 self.proj=nn.Parameter(torch.zeros(config.hidden_size,config.output_dim,device=config.device,dtype=config.dtype),requires_grad=True) self.ln_post=nn.LayerNorm(self.hidden_size,eps=self.norm_eps,elementwise_affine=True,device=config.device,dtype=config.dtype) def forward(self,hidden_state): b,c,h,w=hidden_state.shape #获得embedding向量 hidden_state=self.conv1(hidden_state) hidden_state=hidden_state.reshape(b,self.hidden_size,-1).transpose(1,2) #添加cls token embedding hidden_state=torch.cat((self.class_embedding.expand(b,1,-1).to(hidden_state.dtype),hidden_state),dim=1) #使用transformer原论文中的固定位置嵌入 #hidden_state=hidden_state+position_embedding(hidden_state,self.position_ids) hidden_state=hidden_state+self.positional_embedding.unsqueeze(0).to(hidden_state.dtype) hidden_state=self.ln_pre(hidden_state) hidden_state=self.transformer(hidden_state) #提取cls token输出 if self.num_virtual_tokens is not None: hidden_state=hidden_state[:,self.num_virtual_tokens,:] else: hidden_state=hidden_state[:,0,:] hidden_state=self.ln_post(hidden_state) hidden_state=torch.matmul(hidden_state,self.proj) return hidden_state class ViTConfig: def __init__(self,image_channel,hidden_size,num_heads,num_layers,patch_size,num_patches,output_dim,norm_eps,device): self.image_channel=image_channel self.hidden_size=hidden_size self.num_heads=num_heads self.num_layers=num_layers self.patch_size=patch_size self.num_patches=num_patches self.norm_eps=norm_eps self.device=device self.dtype=torch.float16 self.patch_token_num=self.hidden_size//self.patch_size**2+1 self.output_dim=output_dim self.num_virtual_tokens=20 self.token_dim=self.hidden_size self.encoder_hidden_size=self.hidden_size config=ViTConfig(3,768,12,12,32,49,512,1e-5,torch.device("cuda")) VIT_model=VisionTransformer(config) #------------------------------------------------- ################## PrefixCLIP ############### #------------------------------------------------ class CLIP(nn.Module): def __init__(self,config): super().__init__() self.visual=VIT_model self.device=config.device self.dtype=config.dtype self.token_embedding=nn.Embedding(config.vocab_size,config.hidden_size,dtype=config.dtype,device=config.device) self.transformer=Encoder_model self.positional_embedding=nn.Parameter(torch.randn(config.max_position_embeddings,config.hidden_size,device=config.device)) self.ln_final=nn.LayerNorm(config.hidden_size,eps=config.layer_norm_eps,dtype=config.dtype,device=config.device) self.text_projection=nn.Parameter(torch.empty(config.hidden_size,config.hidden_size,device=config.device)) self.logit_scale=nn.Parameter(torch.ones([],dtype=config.dtype,device=config.device)*config.logit_scale_init,requires_grad=True) def encode_image(self,img): return self.visual(img) def encode_text(self,text): token_embedding=self.token_embedding(text) position_embedding=self.positional_embedding[None,:text.shape[1],:].to(self.dtype) text_embedding=token_embedding+position_embedding text_embedding=self.transformer(text_embedding) text_embedding=self.ln_final(text_embedding) #传入的标记有 text_embedding=text_embedding[torch.arange(text.shape[0]),text.argmax(dim=-1)] text_embedding=text_embedding@self.text_projection.to(self.dtype) return text_embedding def forward(self,image,text): image_features=self.encode_image(image) text_features=self.encode_text(text) # normalized features image_features=image_features/image_features.norm(dim=-1,keepdim=True) text_features=text_features/text_features.norm(dim=-1,keepdim=True) # cosine similarity as logits logit_scale=self.logit_scale.exp() logits_per_image=logit_scale*image_features@text_features.t() logits_per_text=logits_per_image.t() # shape = [global_batch_size, global_batch_size] return logits_per_image,logits_per_text class CLIPConfig: def __init__(self): self.vocab_size=49408 self.hidden_size=512 self.max_position_embeddings=77 self.num_hidden_layers=12 self.num_attention_heads=8 self.layer_norm_eps=1e-5 self.activation_function="Quickgelu" self.dtype=torch.float16 self.device=torch.device("cuda:0") self.logit_scale_init=4.6052 self.num_virtual_tokens=20 self.token_dim=self.hidden_size self.encoder_hidden_size=self.hidden_size CLIPconfig=CLIPConfig() model=CLIP(CLIPconfig) #加载预训练权重 model.load_state_dict(torch.load(r'./Mix_CLIP.pth',weights_only=True),strict=False) #--------------------------------------------- ########### PreProcess Pipelines ########## #------------------------------------------------- import pickle with open('./preprocess.pkl','rb') as f: preprocess = pickle.load(f) with open('./tokenize.pkl','rb') as f: tokenizer=pickle.load(f)