jialinselenasong commited on
Commit
937d50d
·
verified ·
1 Parent(s): 4406abb

Training complete

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: dmis-lab/biobert-v1.1
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: biobert-finetuned-ner1
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # biobert-finetuned-ner1
19
+
20
+ This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.6653
23
+ - Precision: 0.6417
24
+ - Recall: 0.6985
25
+ - F1: 0.6689
26
+ - Accuracy: 0.8611
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 10
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | No log | 1.0 | 305 | 0.4133 | 0.6172 | 0.6674 | 0.6413 | 0.8529 |
58
+ | 0.4433 | 2.0 | 610 | 0.4058 | 0.6121 | 0.6868 | 0.6473 | 0.8568 |
59
+ | 0.4433 | 3.0 | 915 | 0.4456 | 0.6323 | 0.7015 | 0.6651 | 0.8594 |
60
+ | 0.2431 | 4.0 | 1220 | 0.4708 | 0.6323 | 0.6925 | 0.6610 | 0.8612 |
61
+ | 0.1563 | 5.0 | 1525 | 0.5084 | 0.6434 | 0.6998 | 0.6704 | 0.8652 |
62
+ | 0.1563 | 6.0 | 1830 | 0.5655 | 0.6438 | 0.6801 | 0.6615 | 0.8607 |
63
+ | 0.1038 | 7.0 | 2135 | 0.6173 | 0.6385 | 0.6918 | 0.6641 | 0.8591 |
64
+ | 0.1038 | 8.0 | 2440 | 0.6352 | 0.6410 | 0.7011 | 0.6697 | 0.8608 |
65
+ | 0.0754 | 9.0 | 2745 | 0.6600 | 0.6406 | 0.6951 | 0.6668 | 0.8609 |
66
+ | 0.0599 | 10.0 | 3050 | 0.6653 | 0.6417 | 0.6985 | 0.6689 | 0.8611 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.40.1
72
+ - Pytorch 2.2.1+cu121
73
+ - Datasets 2.19.1
74
+ - Tokenizers 0.19.1