jialinselenasong
commited on
Training complete
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: dmis-lab/biobert-v1.1
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: biobert-finetuned-ner1
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# biobert-finetuned-ner1
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.6653
|
23 |
+
- Precision: 0.6417
|
24 |
+
- Recall: 0.6985
|
25 |
+
- F1: 0.6689
|
26 |
+
- Accuracy: 0.8611
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 8
|
47 |
+
- eval_batch_size: 8
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 10
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| No log | 1.0 | 305 | 0.4133 | 0.6172 | 0.6674 | 0.6413 | 0.8529 |
|
58 |
+
| 0.4433 | 2.0 | 610 | 0.4058 | 0.6121 | 0.6868 | 0.6473 | 0.8568 |
|
59 |
+
| 0.4433 | 3.0 | 915 | 0.4456 | 0.6323 | 0.7015 | 0.6651 | 0.8594 |
|
60 |
+
| 0.2431 | 4.0 | 1220 | 0.4708 | 0.6323 | 0.6925 | 0.6610 | 0.8612 |
|
61 |
+
| 0.1563 | 5.0 | 1525 | 0.5084 | 0.6434 | 0.6998 | 0.6704 | 0.8652 |
|
62 |
+
| 0.1563 | 6.0 | 1830 | 0.5655 | 0.6438 | 0.6801 | 0.6615 | 0.8607 |
|
63 |
+
| 0.1038 | 7.0 | 2135 | 0.6173 | 0.6385 | 0.6918 | 0.6641 | 0.8591 |
|
64 |
+
| 0.1038 | 8.0 | 2440 | 0.6352 | 0.6410 | 0.7011 | 0.6697 | 0.8608 |
|
65 |
+
| 0.0754 | 9.0 | 2745 | 0.6600 | 0.6406 | 0.6951 | 0.6668 | 0.8609 |
|
66 |
+
| 0.0599 | 10.0 | 3050 | 0.6653 | 0.6417 | 0.6985 | 0.6689 | 0.8611 |
|
67 |
+
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- Transformers 4.40.1
|
72 |
+
- Pytorch 2.2.1+cu121
|
73 |
+
- Datasets 2.19.1
|
74 |
+
- Tokenizers 0.19.1
|