File size: 1,862 Bytes
0bcf5e1 8519381 0bcf5e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
base_model: stabilityai/stable-diffusion-2-base
library_name: diffusers
license: creativeml-openrail-m
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- diffusers-training
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- diffusers-training
inference: true
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# Text-to-image finetuning - jffacevedo/pxla_trained_model
This pipeline was finetuned from **stabilityai/stable-diffusion-2-base** on the **lambdalabs/naruto-blip-captions** dataset.
## Pipeline usage
You can use the pipeline like so:
```python
import torch
import os
import sys
import numpy as np
import torch_xla.core.xla_model as xm
from time import time
from typing import Tuple
from diffusers import StableDiffusionPipeline
def main(args):
device = xm.xla_device()
model_path = <output_dir>
pipe = StableDiffusionPipeline.from_pretrained(
model_path,
torch_dtype=torch.bfloat16
)
pipe.to(device)
prompt = ["A naruto with green eyes and red legs."]
image = pipe(prompt, num_inference_steps=30, guidance_scale=7.5).images[0]
image.save("naruto.png")
if __name__ == '__main__':
main()
```
## Training info
These are the key hyperparameters used during training:
* Steps: 50
* Learning rate: 1e-06
* Batch size: 32
* Image resolution: 512
* Mixed-precision: bf16
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |