Mixtral_ether / predictors.py
jeduardogruiz's picture
Upload 10 files
9b9e880 verified
import data_source.crypto_compare as cc
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential, load_model
from keras.layers import Dense
from keras.layers import LSTM
from keras.layers import Dropout
import logging
import os
# Initial ltsm code building off of
def import_tensorflow():
# Filter tensorflow version warnings
# https://stackoverflow.com/questions/40426502/is-there-a-way-to-suppress-the-messages-tensorflow-prints/40426709
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # or any {'0', '1', '2'}
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
import warnings
# https://stackoverflow.com/questions/15777951/how-to-suppress-pandas-future-warning
warnings.simplefilter(action='ignore', category=FutureWarning)
warnings.simplefilter(action='ignore', category=Warning)
import tensorflow as tf
tf.get_logger().setLevel('INFO')
tf.autograph.set_verbosity(0)
tf.get_logger().setLevel(logging.ERROR)
return tf
tf = import_tensorflow()
class BtcLtsm:
def __init__(self):
self._data_source = cc.CryptoCompare()
self._train_name_base = 'btc_price_train'
self._test_name_base = 'btc_price_test'
self._model_name_base = 'btc_ltsm'
self._history = 60
self._layer_size = 50
self._dropout = 0.2
def update_dataset(self, percent_train=0.98, limit=2000):
try:
ohlcv_df = self._data_source.get_daily_history('BTC', 'USDT', limit=limit)
test_start_idx = int(len(ohlcv_df) * percent_train)
train_df = ohlcv_df[:test_start_idx]
test_df = ohlcv_df[test_start_idx:]
train_df.to_csv(os.path.join('datasets', f'{self._train_name_base}.csv'), index=False)
test_df.to_csv(os.path.join('datasets', f'{self._test_name_base}.csv'), index=False)
return True
except Exception as e:
# Catch all exceptions and print the error message
print(f"An error occurred: {e}")
return False
def train(self):
train_file_name = os.path.join('datasets', f'{self._train_name_base}.csv')
data_train = pd.read_csv(train_file_name)
train_set = data_train.iloc[:, 1:2].values
sc = MinMaxScaler(feature_range=(0, 1))
train_set = sc.fit_transform(train_set)
logging.debug(f'training set:\n{train_set}')
# Creating a data structure with 60 timesteps and 1 output
history = 60
features_train = []
results_train = []
for i in range(history, len(train_set)):
features_train.append(train_set[i-history:i, 0])
results_train.append(train_set[i, 0])
features_train, results_train = np.array(features_train), np.array(results_train)
# Reshaping
features_train = np.reshape(features_train, (features_train.shape[0], features_train.shape[1], 1))
model_path = os.path.join('predictors/saved', f'{self._model_name_base}.h5')
self._create_rnn(model_path, features_train, results_train)
def load(self):
model_path = os.path.join('predictors/saved', f'{self._model_name_base}.h5')
self._regressor = load_model(model_path)
def test_model(self):
train_file_name = os.path.join('datasets', f'{self._train_name_base}.csv')
test_file_name = os.path.join('datasets', f'{self._test_name_base}.csv')
# Getting the real stock price of 2017
dataset_test = pd.read_csv(test_file_name)
real_stock_price = dataset_test.iloc[:, 1:2].values
dataset_train = pd.read_csv(train_file_name)
train_set = dataset_train.iloc[:, 1:2].values
sc = MinMaxScaler(feature_range = (0, 1))
train_set = sc.fit_transform(train_set)
# Getting the predicted stock price of 2017
dataset_total = pd.concat((dataset_train['open'], dataset_test['open']), axis = 0)
inputs = dataset_total[len(dataset_total) - len(dataset_test) - 60:].values
inputs = inputs.reshape(-1,1)
inputs = sc.transform(inputs)
features_test = []
for i in range(self._history, len(inputs)):
features_test.append(inputs[i-self._history:i, 0])
features_test = np.array(features_test)
features_test = np.reshape(features_test, (features_test.shape[0], features_test.shape[1], 1))
predicted_stock_price = self._regressor.predict(features_test)
predicted_stock_price = sc.inverse_transform(predicted_stock_price)
# Visualising the results
plt.plot(real_stock_price, color = 'red', label = 'Real Price')
plt.plot(predicted_stock_price, color = 'blue', label = 'Predicted Price')
plt.title('BTC Price Prediction')
plt.xlabel('Time')
plt.ylabel('BTC Price')
plt.legend()
plt.savefig('btc_price_prediction.png')
def _create_rnn(self, model_name, features_train, results_train, epochs=100, batch_size=32):
# Initialising the RNN
self._regressor = Sequential()
# Adding the first LSTM layer and some Dropout regularisation
self._regressor.add(LSTM(units = self._layer_size, return_sequences = True, input_shape = (features_train.shape[1], 1)))
self._regressor.add(Dropout(self._dropout))
# Adding a second LSTM layer and some Dropout regularisation
self._regressor.add(LSTM(units = self._layer_size, return_sequences = True))
self._regressor.add(Dropout(self._dropout))
# Adding a third LSTM layer and some Dropout regularisation
self._regressor.add(LSTM(units = self._layer_size, return_sequences = True))
self._regressor.add(Dropout(self._dropout))
# Adding a fourth LSTM layer and some Dropout regularisation
self._regressor.add(LSTM(units = self._layer_size))
self._regressor.add(Dropout(self._dropout))
# Adding the output layer
self._regressor.add(Dense(units = 1))
# Compiling the RNN
self._regressor.compile(optimizer = 'adam', loss = 'mean_squared_error')
# Fitting the RNN to the Training set
self._regressor.fit(features_train, results_train, epochs = epochs, batch_size = batch_size)
self._regressor.save(model_ethereum_mixtral)