Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +486 -0
- config.json +31 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,486 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: BAAI/bge-small-en-v1.5
|
3 |
+
library_name: sentence-transformers
|
4 |
+
pipeline_tag: sentence-similarity
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- sentence-similarity
|
8 |
+
- feature-extraction
|
9 |
+
- generated_from_trainer
|
10 |
+
- dataset_size:29545
|
11 |
+
- loss:MultipleNegativesRankingLoss
|
12 |
+
widget:
|
13 |
+
- source_sentence: How should a Trust Service Provider keep the Regulator informed
|
14 |
+
about the status of its professional indemnity insurance?
|
15 |
+
sentences:
|
16 |
+
- "DocumentID: 3 | PassageID: 17.4.1 | Passage: An Authorised Person conducting\
|
17 |
+
\ a Regulated Activity in relation to Virtual Assets, where applicable, should\
|
18 |
+
\ consider any reporting obligations in relation to, among other things –\n(a)\t\
|
19 |
+
FATCA, as set out in the Guidance Notes on the requirements of the Intergovernmental\
|
20 |
+
\ Agreement between the United Arab Emirates and the United States, issued by\
|
21 |
+
\ the UAE Ministry of Finance in 2015 and as amended from time to time; and\n\
|
22 |
+
(b)\tCommon Reporting Standards, set out in the ADGM Common Reporting Standard\
|
23 |
+
\ Regulations 2017."
|
24 |
+
- "DocumentID: 3 | PassageID: 5.6.2 | Passage: A Trust Service Provider must:\n\
|
25 |
+
(a)\tprovide the Regulator with a copy of its professional indemnity insurance\
|
26 |
+
\ cover; and\n(b)\tnotify the Regulator of any changes to the cover including\
|
27 |
+
\ termination and renewal."
|
28 |
+
- 'DocumentID: 34 | PassageID: 70) | Passage: REGULATORY REQUIREMENTS - SPOT COMMODITY
|
29 |
+
ACTIVITIES
|
30 |
+
|
31 |
+
Market Abuse / Market Surveillance
|
32 |
+
|
33 |
+
MTFs are required to operate an effective market surveillance program to identify,
|
34 |
+
monitor, detect and prevent conduct amounting to market misconduct and/or Financial
|
35 |
+
Crime. Given the significant risks within Spot Commodity markets, an MTF’s or
|
36 |
+
OTF’s surveillance system will need to be robust, and regularly reviewed and enhanced.
|
37 |
+
|
38 |
+
|
39 |
+
'
|
40 |
+
- source_sentence: '- Paragraphs 162-166 of the Virtual Assets Guidance address stablecoins
|
41 |
+
– can you elaborate on the specific regulatory requirements that an entity must
|
42 |
+
meet to use stablecoins in conjunction with digital securities?'
|
43 |
+
sentences:
|
44 |
+
- "DocumentID: 13 | PassageID: APP2.A2.1.12.(2) | Passage: Positions arising from\
|
45 |
+
\ internal hedges are eligible for Trading Book capital treatment, provided that\
|
46 |
+
\ they meet the criteria for trading intent specified in Rule A2.1.5 and the following\
|
47 |
+
\ criteria on prudent valuation:\n(a)\tthe internal hedge is not primarily intended\
|
48 |
+
\ to avoid or reduce Capital Requirements which the Authorised Person would be\
|
49 |
+
\ otherwise required to maintain;\n(b)\tthe internal hedge is properly documented\
|
50 |
+
\ and subject to specific internal approval and audit procedures;\n(c)\tthe internal\
|
51 |
+
\ hedge is dealt with at market conditions;\n(d)\tthe bulk of the Market Risk\
|
52 |
+
\ which is generated by the internal hedge is dynamically managed in the Trading\
|
53 |
+
\ Book within the limits approved by senior management; and\n(e)\tthe internal\
|
54 |
+
\ hedge is carefully monitored with adequate procedures."
|
55 |
+
- "DocumentID: 19 | PassageID: 166).e) | Passage: MTF (using Virtual Assets): using\
|
56 |
+
\ third-party issued fiat tokens as a payment/transaction mechanism:\n\ni.\tIn\
|
57 |
+
\ the context of using third party fiat tokens, the Authorised Person must directly\
|
58 |
+
\ meet the requirements of the Accepted Virtual Assets, Technology Governance\
|
59 |
+
\ and AML/CFT sections of this Guidance.\n\nii.\tFor the related fiat currency\
|
60 |
+
\ custody activities, FSRA preference is to have the MTF utilise a Virtual Asset/Fiat\
|
61 |
+
\ Custodian authorised on the basis of paragraphs 139 - 145 or 166(b) above.\n\
|
62 |
+
\niii.\tIn relation to the issuance of the related fiat token, in circumstances\
|
63 |
+
\ where the issuer is not authorised under paragraph 166(a) above, it is expected\
|
64 |
+
\ that the Authorised Person undertake the same due diligence as that it would\
|
65 |
+
\ apply for the purposes of determining Accepted Virtual Assets (focusing on Technology\
|
66 |
+
\ Governance requirements, the seven factors used to determine an Accepted Virtual\
|
67 |
+
\ Asset, and requirements relating to reporting and reconciliation).\n"
|
68 |
+
- 'DocumentID: 33 | PassageID: 117) | Passage: DIGITAL SECURITIES – SPECIFIC REGULATORY
|
69 |
+
CONSIDERATIONS
|
70 |
+
|
71 |
+
Islamic Finance Rules
|
72 |
+
|
73 |
+
FSRA’s Islamic Finance Rules (IFR) apply to a number of entities that can operate
|
74 |
+
within ADGM, including Authorised Persons and a Person making an Offer of Securities. As
|
75 |
+
IFR is linked to the use of ‘Specified Investments’, including (Digital) Securities,
|
76 |
+
IFR can apply to Authorised Persons Conducting Islamic Financial Business or offering/distributing
|
77 |
+
Shari’a-compliant Securities.
|
78 |
+
|
79 |
+
|
80 |
+
'
|
81 |
+
- source_sentence: How does the FSRA define a "suitably senior level" within a Mining
|
82 |
+
Reporting Entity for the sign-off of Production Targets, and what qualifications
|
83 |
+
or experience is required for individuals at this level?
|
84 |
+
sentences:
|
85 |
+
- 'DocumentID: 6 | PassageID: PART 5.13A.1.1 | Passage: Chapter 13A applies in its
|
86 |
+
entirety to the Fund Manager and, if appointed, the Trustee of a Private Credit
|
87 |
+
Fund, unless otherwise expressly provided for in this Chapter.'
|
88 |
+
- 'DocumentID: 11 | PassageID: 2.7.4.Guidance.1. | Passage: A Listed Entity should
|
89 |
+
provide the Regulator with at least ten Business Days in which to review a proposal
|
90 |
+
for the purchase of its own Shares. The more complex a proposal, the more time
|
91 |
+
that will be required by the Regulator to review and approve the proposal.'
|
92 |
+
- 'DocumentID: 30 | PassageID: 67) | Passage: PRODUCTION TARGETS .
|
93 |
+
|
94 |
+
Rule 11.8 sets out the requirements for disclosing certain types of Production
|
95 |
+
Targets. The FSRA emphasises that Production Targets are forward looking statements.
|
96 |
+
A Production Target must, therefore, be based on reasonable grounds or it will
|
97 |
+
otherwise be deemed misleading. An appropriate level of due diligence must, as
|
98 |
+
a result, be applied to the preparation of a Production Target. The assumptions
|
99 |
+
and underlying figures used in preparing a Production Target need to be carefully
|
100 |
+
vetted and signed off at a suitably senior level within the Mining Reporting Entity
|
101 |
+
before it is disclosed.
|
102 |
+
|
103 |
+
'
|
104 |
+
- source_sentence: In managing PSIAs, what specific prudential requirements must be
|
105 |
+
adhered to in relation to Trading Book and Non-Trading Book activities to ensure
|
106 |
+
compliance with the PRU Rule 1.3?
|
107 |
+
sentences:
|
108 |
+
- "DocumentID: 13 | PassageID: APP11.A11.1.Guidance.11. | Passage: Guidance on risks\
|
109 |
+
\ to be covered as part of the IRAP. An Authorised Person should consider the\
|
110 |
+
\ following risks, where relevant, in its IRAP:\na.\tCredit Risk, including Large\
|
111 |
+
\ Exposures and concentration risks;\nb.\tMarket Risk;\nc.\tLiquidity Risk;\n\
|
112 |
+
d.\tfor Islamic Financial Business involving PSIAs, displaced commercial risk;\n\
|
113 |
+
e.\tinterest rate risk in the Non Trading Book;\nf.\tOperational Risk;\ng.\tinternal\
|
114 |
+
\ controls and systems; and\nh.\treputational risk."
|
115 |
+
- 'DocumentID: 1 | PassageID: 7.2.4.Guidance on Restricted Scope Companies.2. |
|
116 |
+
Passage: Relevant Persons will know that Restricted Scope Companies are subject
|
117 |
+
to less onerous corporate disclosure requirements than other forms of corporate
|
118 |
+
entities due to the requirement to have "(Restricted)" in a company''s name. Given
|
119 |
+
that only the constitution and details of the registered office of a Restricted
|
120 |
+
Scope Company will be available in a public register, a Relevant Person will be
|
121 |
+
required to have a bilateral dialogue with the Restricted Scope Company, in accordance
|
122 |
+
with the RBA, to obtain any other relevant information which it needs to assess
|
123 |
+
the money laundering risks to which it is exposed.'
|
124 |
+
- "DocumentID: 12 | PassageID: 2.3.3 | Passage: An Insurer must develop, implement\
|
125 |
+
\ and maintain a risk management system to identify the operational risks faced\
|
126 |
+
\ by the Insurer, including but not limited to:\n(a)\ttechnology risk (including\
|
127 |
+
\ processing risks);\n(b)\treputational risk;\n(c)\tfraud and other fiduciary\
|
128 |
+
\ risks;\n(d)\tcompliance risk;\n(e)\toutsourcing risk;\n(f)\tbusiness continuity\
|
129 |
+
\ planning risk;\n(g)\tlegal risk; and\n(h)\tkey person risk."
|
130 |
+
- source_sentence: Can a Captive Insurer's concentration positions be considered a
|
131 |
+
reason for establishing reserves for less liquid positions?
|
132 |
+
sentences:
|
133 |
+
- 'DocumentID: 19 | PassageID: 23) | Passage: REGULATORY REQUIREMENTS FOR AUTHORISED
|
134 |
+
PERSONS ENGAGED IN REGULATED ACTIVITIES IN RELATION TO VIRTUAL ASSETS
|
135 |
+
|
136 |
+
Conducting a Regulated Activity in relation to Virtual Assets
|
137 |
+
|
138 |
+
Chapter 17 of COBS applies to all Authorised Persons conducting a Regulated Activity
|
139 |
+
in relation to Virtual Assets, requiring compliance with all requirements set
|
140 |
+
out in COBS Rules 17.1 – 17.6. Authorised Persons that are Operating a Multilateral
|
141 |
+
Trading Facility or Providing Custody in relation to Virtual Assets are also required
|
142 |
+
to comply with the additional requirements set out in COBS Rules 17.7 or 17.8
|
143 |
+
respectively.
|
144 |
+
|
145 |
+
'
|
146 |
+
- 'DocumentID: 2 | PassageID: 6.8.3 | Passage: A Captive Insurer must consider the
|
147 |
+
need for establishing reserves for less liquid positions and, on an on-going basis,
|
148 |
+
review their continued appropriateness in accordance with the requirements set
|
149 |
+
out in this Rule. Less liquid positions could arise from both market events and
|
150 |
+
institution-related situations e.g. concentration positions and/or stale positions.'
|
151 |
+
- "DocumentID: 3 | PassageID: 22.3.2 | Passage: An Authorised Person must –\n(a)\t\
|
152 |
+
have arrangements in place to ensure that it, and its market participants, are\
|
153 |
+
\ certified as compliant with:\n(i) \tISO 14001 (Environmental Management Systems\
|
154 |
+
\ (EMS));\n(ii)\tOHSAS 18001 / ISO 45001 (Health & Safety Management); or\n(iii)\t\
|
155 |
+
equivalent certification standards; and\n(b)\tensure its arrangements are aligned\
|
156 |
+
\ with the OECD’s Due Diligence Guidance for Responsible Mineral Supply Chains\
|
157 |
+
\ (as applicable)."
|
158 |
+
---
|
159 |
+
|
160 |
+
# SentenceTransformer based on BAAI/bge-small-en-v1.5
|
161 |
+
|
162 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) on the csv dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
163 |
+
|
164 |
+
## Model Details
|
165 |
+
|
166 |
+
### Model Description
|
167 |
+
- **Model Type:** Sentence Transformer
|
168 |
+
- **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
|
169 |
+
- **Maximum Sequence Length:** 512 tokens
|
170 |
+
- **Output Dimensionality:** 384 tokens
|
171 |
+
- **Similarity Function:** Cosine Similarity
|
172 |
+
- **Training Dataset:**
|
173 |
+
- csv
|
174 |
+
<!-- - **Language:** Unknown -->
|
175 |
+
<!-- - **License:** Unknown -->
|
176 |
+
|
177 |
+
### Model Sources
|
178 |
+
|
179 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
180 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
181 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
182 |
+
|
183 |
+
### Full Model Architecture
|
184 |
+
|
185 |
+
```
|
186 |
+
SentenceTransformer(
|
187 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
|
188 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
189 |
+
(2): Normalize()
|
190 |
+
)
|
191 |
+
```
|
192 |
+
|
193 |
+
## Usage
|
194 |
+
|
195 |
+
### Direct Usage (Sentence Transformers)
|
196 |
+
|
197 |
+
First install the Sentence Transformers library:
|
198 |
+
|
199 |
+
```bash
|
200 |
+
pip install -U sentence-transformers
|
201 |
+
```
|
202 |
+
|
203 |
+
Then you can load this model and run inference.
|
204 |
+
```python
|
205 |
+
from sentence_transformers import SentenceTransformer
|
206 |
+
|
207 |
+
# Download from the 🤗 Hub
|
208 |
+
model = SentenceTransformer("jebish7/MedEmbed-small-v0.1_MNR_5_Det")
|
209 |
+
# Run inference
|
210 |
+
sentences = [
|
211 |
+
"Can a Captive Insurer's concentration positions be considered a reason for establishing reserves for less liquid positions?",
|
212 |
+
'DocumentID: 2 | PassageID: 6.8.3 | Passage: A Captive Insurer must consider the need for establishing reserves for less liquid positions and, on an on-going basis, review their continued appropriateness in accordance with the requirements set out in this Rule. Less liquid positions could arise from both market events and institution-related situations e.g. concentration positions and/or stale positions.',
|
213 |
+
'DocumentID: 19 | PassageID: 23) | Passage: REGULATORY REQUIREMENTS FOR AUTHORISED PERSONS ENGAGED IN REGULATED ACTIVITIES IN RELATION TO VIRTUAL ASSETS\nConducting a Regulated Activity in relation to Virtual Assets\nChapter 17 of COBS applies to all Authorised Persons conducting a Regulated Activity in relation to Virtual Assets, requiring compliance with all requirements set out in COBS Rules 17.1 – 17.6. Authorised Persons that are Operating a Multilateral Trading Facility or Providing Custody in relation to Virtual Assets are also required to comply with the additional requirements set out in COBS Rules 17.7 or 17.8 respectively.\n',
|
214 |
+
]
|
215 |
+
embeddings = model.encode(sentences)
|
216 |
+
print(embeddings.shape)
|
217 |
+
# [3, 384]
|
218 |
+
|
219 |
+
# Get the similarity scores for the embeddings
|
220 |
+
similarities = model.similarity(embeddings, embeddings)
|
221 |
+
print(similarities.shape)
|
222 |
+
# [3, 3]
|
223 |
+
```
|
224 |
+
|
225 |
+
<!--
|
226 |
+
### Direct Usage (Transformers)
|
227 |
+
|
228 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
229 |
+
|
230 |
+
</details>
|
231 |
+
-->
|
232 |
+
|
233 |
+
<!--
|
234 |
+
### Downstream Usage (Sentence Transformers)
|
235 |
+
|
236 |
+
You can finetune this model on your own dataset.
|
237 |
+
|
238 |
+
<details><summary>Click to expand</summary>
|
239 |
+
|
240 |
+
</details>
|
241 |
+
-->
|
242 |
+
|
243 |
+
<!--
|
244 |
+
### Out-of-Scope Use
|
245 |
+
|
246 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
247 |
+
-->
|
248 |
+
|
249 |
+
<!--
|
250 |
+
## Bias, Risks and Limitations
|
251 |
+
|
252 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
253 |
+
-->
|
254 |
+
|
255 |
+
<!--
|
256 |
+
### Recommendations
|
257 |
+
|
258 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
259 |
+
-->
|
260 |
+
|
261 |
+
## Training Details
|
262 |
+
|
263 |
+
### Training Dataset
|
264 |
+
|
265 |
+
#### csv
|
266 |
+
|
267 |
+
* Dataset: csv
|
268 |
+
* Size: 29,545 training samples
|
269 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
270 |
+
* Approximate statistics based on the first 1000 samples:
|
271 |
+
| | anchor | positive |
|
272 |
+
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
|
273 |
+
| type | string | string |
|
274 |
+
| details | <ul><li>min: 18 tokens</li><li>mean: 34.86 tokens</li><li>max: 61 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 131.72 tokens</li><li>max: 512 tokens</li></ul> |
|
275 |
+
* Samples:
|
276 |
+
| anchor | positive |
|
277 |
+
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
278 |
+
| <code>What is the threshold decline in the economic value of a firm, as a result of changes in interest rates, that necessitates immediate notification to the Regulator according to Rule 7.2.2?</code> | <code>DocumentID: 13 | PassageID: 7.2.3 | Passage: An Authorised Person must immediately notify the Regulator if any evaluation under this Section suggests that, as a result of the change in interest rates described in Rule 7.2.2, the economic value of the firm would decline by more than 20% of its Capital Resources.</code> |
|
279 |
+
| <code>What level of board and senior management involvement does the ADGM expect in the oversight of the incorporation of climate-related financial risks into capital and liquidity adequacy processes?</code> | <code>DocumentID: 36 | PassageID: D.6. | Passage: Principle 6 – Incorporation of climate-related financial risks into capital and liquidity adequacy processes. Relevant financial firms should incorporate material climate-related financial risks in their internal capital and liquidity adequacy assessment processes.<br></code> |
|
280 |
+
| <code>Can you provide guidance on the specific indicators or factors that should be considered by a Relevant Person when conducting a risk assessment to identify higher money laundering risks within the framework of the ADGM's RBA?</code> | <code>DocumentID: 1 | PassageID: 5.1.1.Guidance.4. | Passage: In adopting an RBA, a Relevant Person should continue to meet the requirements that are mandated under the AML Rulebook including:<br>(a) assessing the relevant money laundering risks in accordance with Chapter 6 or Chapter 7 of AML (as applicable);<br>(b) undertaking CDD in accordance with Rule 8.3.1;<br>(c) undertaking Enhanced CDD pursuant to Rule 8.1.1(3) in accordance with Rule 8.4.1; and<br>(d) undertaking Simplified CDD in accordance with Rule 8.5.1 where permissible pursuant to Rule 8.1.1(4).</code> |
|
281 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
282 |
+
```json
|
283 |
+
{
|
284 |
+
"scale": 20.0,
|
285 |
+
"similarity_fct": "cos_sim"
|
286 |
+
}
|
287 |
+
```
|
288 |
+
|
289 |
+
### Training Hyperparameters
|
290 |
+
#### Non-Default Hyperparameters
|
291 |
+
|
292 |
+
- `per_device_train_batch_size`: 64
|
293 |
+
- `learning_rate`: 2e-05
|
294 |
+
- `num_train_epochs`: 5
|
295 |
+
- `warmup_ratio`: 0.1
|
296 |
+
- `batch_sampler`: no_duplicates
|
297 |
+
|
298 |
+
#### All Hyperparameters
|
299 |
+
<details><summary>Click to expand</summary>
|
300 |
+
|
301 |
+
- `overwrite_output_dir`: False
|
302 |
+
- `do_predict`: False
|
303 |
+
- `eval_strategy`: no
|
304 |
+
- `prediction_loss_only`: True
|
305 |
+
- `per_device_train_batch_size`: 64
|
306 |
+
- `per_device_eval_batch_size`: 8
|
307 |
+
- `per_gpu_train_batch_size`: None
|
308 |
+
- `per_gpu_eval_batch_size`: None
|
309 |
+
- `gradient_accumulation_steps`: 1
|
310 |
+
- `eval_accumulation_steps`: None
|
311 |
+
- `torch_empty_cache_steps`: None
|
312 |
+
- `learning_rate`: 2e-05
|
313 |
+
- `weight_decay`: 0.0
|
314 |
+
- `adam_beta1`: 0.9
|
315 |
+
- `adam_beta2`: 0.999
|
316 |
+
- `adam_epsilon`: 1e-08
|
317 |
+
- `max_grad_norm`: 1.0
|
318 |
+
- `num_train_epochs`: 5
|
319 |
+
- `max_steps`: -1
|
320 |
+
- `lr_scheduler_type`: linear
|
321 |
+
- `lr_scheduler_kwargs`: {}
|
322 |
+
- `warmup_ratio`: 0.1
|
323 |
+
- `warmup_steps`: 0
|
324 |
+
- `log_level`: passive
|
325 |
+
- `log_level_replica`: warning
|
326 |
+
- `log_on_each_node`: True
|
327 |
+
- `logging_nan_inf_filter`: True
|
328 |
+
- `save_safetensors`: True
|
329 |
+
- `save_on_each_node`: False
|
330 |
+
- `save_only_model`: False
|
331 |
+
- `restore_callback_states_from_checkpoint`: False
|
332 |
+
- `no_cuda`: False
|
333 |
+
- `use_cpu`: False
|
334 |
+
- `use_mps_device`: False
|
335 |
+
- `seed`: 42
|
336 |
+
- `data_seed`: None
|
337 |
+
- `jit_mode_eval`: False
|
338 |
+
- `use_ipex`: False
|
339 |
+
- `bf16`: False
|
340 |
+
- `fp16`: False
|
341 |
+
- `fp16_opt_level`: O1
|
342 |
+
- `half_precision_backend`: auto
|
343 |
+
- `bf16_full_eval`: False
|
344 |
+
- `fp16_full_eval`: False
|
345 |
+
- `tf32`: None
|
346 |
+
- `local_rank`: 0
|
347 |
+
- `ddp_backend`: None
|
348 |
+
- `tpu_num_cores`: None
|
349 |
+
- `tpu_metrics_debug`: False
|
350 |
+
- `debug`: []
|
351 |
+
- `dataloader_drop_last`: False
|
352 |
+
- `dataloader_num_workers`: 0
|
353 |
+
- `dataloader_prefetch_factor`: None
|
354 |
+
- `past_index`: -1
|
355 |
+
- `disable_tqdm`: False
|
356 |
+
- `remove_unused_columns`: True
|
357 |
+
- `label_names`: None
|
358 |
+
- `load_best_model_at_end`: False
|
359 |
+
- `ignore_data_skip`: False
|
360 |
+
- `fsdp`: []
|
361 |
+
- `fsdp_min_num_params`: 0
|
362 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
363 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
364 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
365 |
+
- `deepspeed`: None
|
366 |
+
- `label_smoothing_factor`: 0.0
|
367 |
+
- `optim`: adamw_torch
|
368 |
+
- `optim_args`: None
|
369 |
+
- `adafactor`: False
|
370 |
+
- `group_by_length`: False
|
371 |
+
- `length_column_name`: length
|
372 |
+
- `ddp_find_unused_parameters`: None
|
373 |
+
- `ddp_bucket_cap_mb`: None
|
374 |
+
- `ddp_broadcast_buffers`: False
|
375 |
+
- `dataloader_pin_memory`: True
|
376 |
+
- `dataloader_persistent_workers`: False
|
377 |
+
- `skip_memory_metrics`: True
|
378 |
+
- `use_legacy_prediction_loop`: False
|
379 |
+
- `push_to_hub`: False
|
380 |
+
- `resume_from_checkpoint`: None
|
381 |
+
- `hub_model_id`: None
|
382 |
+
- `hub_strategy`: every_save
|
383 |
+
- `hub_private_repo`: False
|
384 |
+
- `hub_always_push`: False
|
385 |
+
- `gradient_checkpointing`: False
|
386 |
+
- `gradient_checkpointing_kwargs`: None
|
387 |
+
- `include_inputs_for_metrics`: False
|
388 |
+
- `eval_do_concat_batches`: True
|
389 |
+
- `fp16_backend`: auto
|
390 |
+
- `push_to_hub_model_id`: None
|
391 |
+
- `push_to_hub_organization`: None
|
392 |
+
- `mp_parameters`:
|
393 |
+
- `auto_find_batch_size`: False
|
394 |
+
- `full_determinism`: False
|
395 |
+
- `torchdynamo`: None
|
396 |
+
- `ray_scope`: last
|
397 |
+
- `ddp_timeout`: 1800
|
398 |
+
- `torch_compile`: False
|
399 |
+
- `torch_compile_backend`: None
|
400 |
+
- `torch_compile_mode`: None
|
401 |
+
- `dispatch_batches`: None
|
402 |
+
- `split_batches`: None
|
403 |
+
- `include_tokens_per_second`: False
|
404 |
+
- `include_num_input_tokens_seen`: False
|
405 |
+
- `neftune_noise_alpha`: None
|
406 |
+
- `optim_target_modules`: None
|
407 |
+
- `batch_eval_metrics`: False
|
408 |
+
- `eval_on_start`: False
|
409 |
+
- `use_liger_kernel`: False
|
410 |
+
- `eval_use_gather_object`: False
|
411 |
+
- `batch_sampler`: no_duplicates
|
412 |
+
- `multi_dataset_batch_sampler`: proportional
|
413 |
+
|
414 |
+
</details>
|
415 |
+
|
416 |
+
### Training Logs
|
417 |
+
| Epoch | Step | Training Loss |
|
418 |
+
|:------:|:----:|:-------------:|
|
419 |
+
| 0.4329 | 100 | 1.743 |
|
420 |
+
| 0.8658 | 200 | 1.2012 |
|
421 |
+
| 1.0346 | 300 | 0.5543 |
|
422 |
+
| 1.4675 | 400 | 1.1161 |
|
423 |
+
| 1.9004 | 500 | 1.0257 |
|
424 |
+
| 2.0693 | 600 | 0.4671 |
|
425 |
+
| 2.5022 | 700 | 0.998 |
|
426 |
+
| 2.9351 | 800 | 0.973 |
|
427 |
+
| 3.1039 | 900 | 0.4108 |
|
428 |
+
| 3.5368 | 1000 | 0.9453 |
|
429 |
+
| 3.9697 | 1100 | 0.9343 |
|
430 |
+
|
431 |
+
|
432 |
+
### Framework Versions
|
433 |
+
- Python: 3.10.14
|
434 |
+
- Sentence Transformers: 3.1.1
|
435 |
+
- Transformers: 4.45.2
|
436 |
+
- PyTorch: 2.4.0
|
437 |
+
- Accelerate: 0.34.2
|
438 |
+
- Datasets: 3.0.1
|
439 |
+
- Tokenizers: 0.20.0
|
440 |
+
|
441 |
+
## Citation
|
442 |
+
|
443 |
+
### BibTeX
|
444 |
+
|
445 |
+
#### Sentence Transformers
|
446 |
+
```bibtex
|
447 |
+
@inproceedings{reimers-2019-sentence-bert,
|
448 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
449 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
450 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
451 |
+
month = "11",
|
452 |
+
year = "2019",
|
453 |
+
publisher = "Association for Computational Linguistics",
|
454 |
+
url = "https://arxiv.org/abs/1908.10084",
|
455 |
+
}
|
456 |
+
```
|
457 |
+
|
458 |
+
#### MultipleNegativesRankingLoss
|
459 |
+
```bibtex
|
460 |
+
@misc{henderson2017efficient,
|
461 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
462 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
463 |
+
year={2017},
|
464 |
+
eprint={1705.00652},
|
465 |
+
archivePrefix={arXiv},
|
466 |
+
primaryClass={cs.CL}
|
467 |
+
}
|
468 |
+
```
|
469 |
+
|
470 |
+
<!--
|
471 |
+
## Glossary
|
472 |
+
|
473 |
+
*Clearly define terms in order to be accessible across audiences.*
|
474 |
+
-->
|
475 |
+
|
476 |
+
<!--
|
477 |
+
## Model Card Authors
|
478 |
+
|
479 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
480 |
+
-->
|
481 |
+
|
482 |
+
<!--
|
483 |
+
## Model Card Contact
|
484 |
+
|
485 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
486 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "BAAI/bge-small-en-v1.5",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 384,
|
11 |
+
"id2label": {
|
12 |
+
"0": "LABEL_0"
|
13 |
+
},
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 1536,
|
16 |
+
"label2id": {
|
17 |
+
"LABEL_0": 0
|
18 |
+
},
|
19 |
+
"layer_norm_eps": 1e-12,
|
20 |
+
"max_position_embeddings": 512,
|
21 |
+
"model_type": "bert",
|
22 |
+
"num_attention_heads": 12,
|
23 |
+
"num_hidden_layers": 12,
|
24 |
+
"pad_token_id": 0,
|
25 |
+
"position_embedding_type": "absolute",
|
26 |
+
"torch_dtype": "float32",
|
27 |
+
"transformers_version": "4.45.2",
|
28 |
+
"type_vocab_size": 2,
|
29 |
+
"use_cache": true,
|
30 |
+
"vocab_size": 30522
|
31 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.1",
|
4 |
+
"transformers": "4.45.2",
|
5 |
+
"pytorch": "2.4.0"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3bb2e47b37a0715df99c2adb2795c6270c817d349a3b0c2079303c27b57e9c5
|
3 |
+
size 133462128
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"never_split": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"sep_token": "[SEP]",
|
53 |
+
"strip_accents": null,
|
54 |
+
"tokenize_chinese_chars": true,
|
55 |
+
"tokenizer_class": "BertTokenizer",
|
56 |
+
"unk_token": "[UNK]"
|
57 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|