jebish7 commited on
Commit
c4042b3
·
verified ·
1 Parent(s): e0f61d8

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,486 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-small-en-v1.5
3
+ library_name: sentence-transformers
4
+ pipeline_tag: sentence-similarity
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:29545
11
+ - loss:MultipleNegativesRankingLoss
12
+ widget:
13
+ - source_sentence: How should a Trust Service Provider keep the Regulator informed
14
+ about the status of its professional indemnity insurance?
15
+ sentences:
16
+ - "DocumentID: 3 | PassageID: 17.4.1 | Passage: An Authorised Person conducting\
17
+ \ a Regulated Activity in relation to Virtual Assets, where applicable, should\
18
+ \ consider any reporting obligations in relation to, among other things –\n(a)\t\
19
+ FATCA, as set out in the Guidance Notes on the requirements of the Intergovernmental\
20
+ \ Agreement between the United Arab Emirates and the United States, issued by\
21
+ \ the UAE Ministry of Finance in 2015 and as amended from time to time; and\n\
22
+ (b)\tCommon Reporting Standards, set out in the ADGM Common Reporting Standard\
23
+ \ Regulations 2017."
24
+ - "DocumentID: 3 | PassageID: 5.6.2 | Passage: A Trust Service Provider must:\n\
25
+ (a)\tprovide the Regulator with a copy of its professional indemnity insurance\
26
+ \ cover; and\n(b)\tnotify the Regulator of any changes to the cover including\
27
+ \ termination and renewal."
28
+ - 'DocumentID: 34 | PassageID: 70) | Passage: REGULATORY REQUIREMENTS - SPOT COMMODITY
29
+ ACTIVITIES
30
+
31
+ Market Abuse / Market Surveillance
32
+
33
+ MTFs are required to operate an effective market surveillance program to identify,
34
+ monitor, detect and prevent conduct amounting to market misconduct and/or Financial
35
+ Crime. Given the significant risks within Spot Commodity markets, an MTF’s or
36
+ OTF’s surveillance system will need to be robust, and regularly reviewed and enhanced.
37
+
38
+
39
+ '
40
+ - source_sentence: '- Paragraphs 162-166 of the Virtual Assets Guidance address stablecoins
41
+ – can you elaborate on the specific regulatory requirements that an entity must
42
+ meet to use stablecoins in conjunction with digital securities?'
43
+ sentences:
44
+ - "DocumentID: 13 | PassageID: APP2.A2.1.12.(2) | Passage: Positions arising from\
45
+ \ internal hedges are eligible for Trading Book capital treatment, provided that\
46
+ \ they meet the criteria for trading intent specified in Rule A2.1.5 and the following\
47
+ \ criteria on prudent valuation:\n(a)\tthe internal hedge is not primarily intended\
48
+ \ to avoid or reduce Capital Requirements which the Authorised Person would be\
49
+ \ otherwise required to maintain;\n(b)\tthe internal hedge is properly documented\
50
+ \ and subject to specific internal approval and audit procedures;\n(c)\tthe internal\
51
+ \ hedge is dealt with at market conditions;\n(d)\tthe bulk of the Market Risk\
52
+ \ which is generated by the internal hedge is dynamically managed in the Trading\
53
+ \ Book within the limits approved by senior management; and\n(e)\tthe internal\
54
+ \ hedge is carefully monitored with adequate procedures."
55
+ - "DocumentID: 19 | PassageID: 166).e) | Passage: MTF (using Virtual Assets): using\
56
+ \ third-party issued fiat tokens as a payment/transaction mechanism:\n\ni.\tIn\
57
+ \ the context of using third party fiat tokens, the Authorised Person must directly\
58
+ \ meet the requirements of the Accepted Virtual Assets, Technology Governance\
59
+ \ and AML/CFT sections of this Guidance.\n\nii.\tFor the related fiat currency\
60
+ \ custody activities, FSRA preference is to have the MTF utilise a Virtual Asset/Fiat\
61
+ \ Custodian authorised on the basis of paragraphs 139 - 145 or 166(b) above.\n\
62
+ \niii.\tIn relation to the issuance of the related fiat token, in circumstances\
63
+ \ where the issuer is not authorised under paragraph 166(a) above, it is expected\
64
+ \ that the Authorised Person undertake the same due diligence as that it would\
65
+ \ apply for the purposes of determining Accepted Virtual Assets (focusing on Technology\
66
+ \ Governance requirements, the seven factors used to determine an Accepted Virtual\
67
+ \ Asset, and requirements relating to reporting and reconciliation).\n"
68
+ - 'DocumentID: 33 | PassageID: 117) | Passage: DIGITAL SECURITIES – SPECIFIC REGULATORY
69
+ CONSIDERATIONS
70
+
71
+ Islamic Finance Rules
72
+
73
+ FSRA’s Islamic Finance Rules (IFR) apply to a number of entities that can operate
74
+ within ADGM, including Authorised Persons and a Person making an Offer of Securities. As
75
+ IFR is linked to the use of ‘Specified Investments’, including (Digital) Securities,
76
+ IFR can apply to Authorised Persons Conducting Islamic Financial Business or offering/distributing
77
+ Shari’a-compliant Securities.
78
+
79
+
80
+ '
81
+ - source_sentence: How does the FSRA define a "suitably senior level" within a Mining
82
+ Reporting Entity for the sign-off of Production Targets, and what qualifications
83
+ or experience is required for individuals at this level?
84
+ sentences:
85
+ - 'DocumentID: 6 | PassageID: PART 5.13A.1.1 | Passage: Chapter 13A applies in its
86
+ entirety to the Fund Manager and, if appointed, the Trustee of a Private Credit
87
+ Fund, unless otherwise expressly provided for in this Chapter.'
88
+ - 'DocumentID: 11 | PassageID: 2.7.4.Guidance.1. | Passage: A Listed Entity should
89
+ provide the Regulator with at least ten Business Days in which to review a proposal
90
+ for the purchase of its own Shares. The more complex a proposal, the more time
91
+ that will be required by the Regulator to review and approve the proposal.'
92
+ - 'DocumentID: 30 | PassageID: 67) | Passage: PRODUCTION TARGETS .
93
+
94
+ Rule 11.8 sets out the requirements for disclosing certain types of Production
95
+ Targets. The FSRA emphasises that Production Targets are forward looking statements.
96
+ A Production Target must, therefore, be based on reasonable grounds or it will
97
+ otherwise be deemed misleading. An appropriate level of due diligence must, as
98
+ a result, be applied to the preparation of a Production Target. The assumptions
99
+ and underlying figures used in preparing a Production Target need to be carefully
100
+ vetted and signed off at a suitably senior level within the Mining Reporting Entity
101
+ before it is disclosed.
102
+
103
+ '
104
+ - source_sentence: In managing PSIAs, what specific prudential requirements must be
105
+ adhered to in relation to Trading Book and Non-Trading Book activities to ensure
106
+ compliance with the PRU Rule 1.3?
107
+ sentences:
108
+ - "DocumentID: 13 | PassageID: APP11.A11.1.Guidance.11. | Passage: Guidance on risks\
109
+ \ to be covered as part of the IRAP. An Authorised Person should consider the\
110
+ \ following risks, where relevant, in its IRAP:\na.\tCredit Risk, including Large\
111
+ \ Exposures and concentration risks;\nb.\tMarket Risk;\nc.\tLiquidity Risk;\n\
112
+ d.\tfor Islamic Financial Business involving PSIAs, displaced commercial risk;\n\
113
+ e.\tinterest rate risk in the Non Trading Book;\nf.\tOperational Risk;\ng.\tinternal\
114
+ \ controls and systems; and\nh.\treputational risk."
115
+ - 'DocumentID: 1 | PassageID: 7.2.4.Guidance on Restricted Scope Companies.2. |
116
+ Passage: Relevant Persons will know that Restricted Scope Companies are subject
117
+ to less onerous corporate disclosure requirements than other forms of corporate
118
+ entities due to the requirement to have "(Restricted)" in a company''s name. Given
119
+ that only the constitution and details of the registered office of a Restricted
120
+ Scope Company will be available in a public register, a Relevant Person will be
121
+ required to have a bilateral dialogue with the Restricted Scope Company, in accordance
122
+ with the RBA, to obtain any other relevant information which it needs to assess
123
+ the money laundering risks to which it is exposed.'
124
+ - "DocumentID: 12 | PassageID: 2.3.3 | Passage: An Insurer must develop, implement\
125
+ \ and maintain a risk management system to identify the operational risks faced\
126
+ \ by the Insurer, including but not limited to:\n(a)\ttechnology risk (including\
127
+ \ processing risks);\n(b)\treputational risk;\n(c)\tfraud and other fiduciary\
128
+ \ risks;\n(d)\tcompliance risk;\n(e)\toutsourcing risk;\n(f)\tbusiness continuity\
129
+ \ planning risk;\n(g)\tlegal risk; and\n(h)\tkey person risk."
130
+ - source_sentence: Can a Captive Insurer's concentration positions be considered a
131
+ reason for establishing reserves for less liquid positions?
132
+ sentences:
133
+ - 'DocumentID: 19 | PassageID: 23) | Passage: REGULATORY REQUIREMENTS FOR AUTHORISED
134
+ PERSONS ENGAGED IN REGULATED ACTIVITIES IN RELATION TO VIRTUAL ASSETS
135
+
136
+ Conducting a Regulated Activity in relation to Virtual Assets
137
+
138
+ Chapter 17 of COBS applies to all Authorised Persons conducting a Regulated Activity
139
+ in relation to Virtual Assets, requiring compliance with all requirements set
140
+ out in COBS Rules 17.1 – 17.6. Authorised Persons that are Operating a Multilateral
141
+ Trading Facility or Providing Custody in relation to Virtual Assets are also required
142
+ to comply with the additional requirements set out in COBS Rules 17.7 or 17.8
143
+ respectively.
144
+
145
+ '
146
+ - 'DocumentID: 2 | PassageID: 6.8.3 | Passage: A Captive Insurer must consider the
147
+ need for establishing reserves for less liquid positions and, on an on-going basis,
148
+ review their continued appropriateness in accordance with the requirements set
149
+ out in this Rule. Less liquid positions could arise from both market events and
150
+ institution-related situations e.g. concentration positions and/or stale positions.'
151
+ - "DocumentID: 3 | PassageID: 22.3.2 | Passage: An Authorised Person must –\n(a)\t\
152
+ have arrangements in place to ensure that it, and its market participants, are\
153
+ \ certified as compliant with:\n(i) \tISO 14001 (Environmental Management Systems\
154
+ \ (EMS));\n(ii)\tOHSAS 18001 / ISO 45001 (Health & Safety Management); or\n(iii)\t\
155
+ equivalent certification standards; and\n(b)\tensure its arrangements are aligned\
156
+ \ with the OECD’s Due Diligence Guidance for Responsible Mineral Supply Chains\
157
+ \ (as applicable)."
158
+ ---
159
+
160
+ # SentenceTransformer based on BAAI/bge-small-en-v1.5
161
+
162
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) on the csv dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
163
+
164
+ ## Model Details
165
+
166
+ ### Model Description
167
+ - **Model Type:** Sentence Transformer
168
+ - **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
169
+ - **Maximum Sequence Length:** 512 tokens
170
+ - **Output Dimensionality:** 384 tokens
171
+ - **Similarity Function:** Cosine Similarity
172
+ - **Training Dataset:**
173
+ - csv
174
+ <!-- - **Language:** Unknown -->
175
+ <!-- - **License:** Unknown -->
176
+
177
+ ### Model Sources
178
+
179
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
180
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
181
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
182
+
183
+ ### Full Model Architecture
184
+
185
+ ```
186
+ SentenceTransformer(
187
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
188
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
189
+ (2): Normalize()
190
+ )
191
+ ```
192
+
193
+ ## Usage
194
+
195
+ ### Direct Usage (Sentence Transformers)
196
+
197
+ First install the Sentence Transformers library:
198
+
199
+ ```bash
200
+ pip install -U sentence-transformers
201
+ ```
202
+
203
+ Then you can load this model and run inference.
204
+ ```python
205
+ from sentence_transformers import SentenceTransformer
206
+
207
+ # Download from the 🤗 Hub
208
+ model = SentenceTransformer("jebish7/MedEmbed-small-v0.1_MNR_5_Det")
209
+ # Run inference
210
+ sentences = [
211
+ "Can a Captive Insurer's concentration positions be considered a reason for establishing reserves for less liquid positions?",
212
+ 'DocumentID: 2 | PassageID: 6.8.3 | Passage: A Captive Insurer must consider the need for establishing reserves for less liquid positions and, on an on-going basis, review their continued appropriateness in accordance with the requirements set out in this Rule. Less liquid positions could arise from both market events and institution-related situations e.g. concentration positions and/or stale positions.',
213
+ 'DocumentID: 19 | PassageID: 23) | Passage: REGULATORY REQUIREMENTS FOR AUTHORISED PERSONS ENGAGED IN REGULATED ACTIVITIES IN RELATION TO VIRTUAL ASSETS\nConducting a Regulated Activity in relation to Virtual Assets\nChapter 17 of COBS applies to all Authorised Persons conducting a Regulated Activity in relation to Virtual Assets, requiring compliance with all requirements set out in COBS Rules 17.1 – 17.6. Authorised Persons that are Operating a Multilateral Trading Facility or Providing Custody in relation to Virtual Assets are also required to comply with the additional requirements set out in COBS Rules 17.7 or 17.8 respectively.\n',
214
+ ]
215
+ embeddings = model.encode(sentences)
216
+ print(embeddings.shape)
217
+ # [3, 384]
218
+
219
+ # Get the similarity scores for the embeddings
220
+ similarities = model.similarity(embeddings, embeddings)
221
+ print(similarities.shape)
222
+ # [3, 3]
223
+ ```
224
+
225
+ <!--
226
+ ### Direct Usage (Transformers)
227
+
228
+ <details><summary>Click to see the direct usage in Transformers</summary>
229
+
230
+ </details>
231
+ -->
232
+
233
+ <!--
234
+ ### Downstream Usage (Sentence Transformers)
235
+
236
+ You can finetune this model on your own dataset.
237
+
238
+ <details><summary>Click to expand</summary>
239
+
240
+ </details>
241
+ -->
242
+
243
+ <!--
244
+ ### Out-of-Scope Use
245
+
246
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
247
+ -->
248
+
249
+ <!--
250
+ ## Bias, Risks and Limitations
251
+
252
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
253
+ -->
254
+
255
+ <!--
256
+ ### Recommendations
257
+
258
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
259
+ -->
260
+
261
+ ## Training Details
262
+
263
+ ### Training Dataset
264
+
265
+ #### csv
266
+
267
+ * Dataset: csv
268
+ * Size: 29,545 training samples
269
+ * Columns: <code>anchor</code> and <code>positive</code>
270
+ * Approximate statistics based on the first 1000 samples:
271
+ | | anchor | positive |
272
+ |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
273
+ | type | string | string |
274
+ | details | <ul><li>min: 18 tokens</li><li>mean: 34.86 tokens</li><li>max: 61 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 131.72 tokens</li><li>max: 512 tokens</li></ul> |
275
+ * Samples:
276
+ | anchor | positive |
277
+ |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
278
+ | <code>What is the threshold decline in the economic value of a firm, as a result of changes in interest rates, that necessitates immediate notification to the Regulator according to Rule 7.2.2?</code> | <code>DocumentID: 13 | PassageID: 7.2.3 | Passage: An Authorised Person must immediately notify the Regulator if any evaluation under this Section suggests that, as a result of the change in interest rates described in Rule 7.2.2, the economic value of the firm would decline by more than 20% of its Capital Resources.</code> |
279
+ | <code>What level of board and senior management involvement does the ADGM expect in the oversight of the incorporation of climate-related financial risks into capital and liquidity adequacy processes?</code> | <code>DocumentID: 36 | PassageID: D.6. | Passage: Principle 6 – Incorporation of climate-related financial risks into capital and liquidity adequacy processes. Relevant financial firms should incorporate material climate-related financial risks in their internal capital and liquidity adequacy assessment processes.<br></code> |
280
+ | <code>Can you provide guidance on the specific indicators or factors that should be considered by a Relevant Person when conducting a risk assessment to identify higher money laundering risks within the framework of the ADGM's RBA?</code> | <code>DocumentID: 1 | PassageID: 5.1.1.Guidance.4. | Passage: In adopting an RBA, a Relevant Person should continue to meet the requirements that are mandated under the AML Rulebook including:<br>(a) assessing the relevant money laundering risks in accordance with Chapter ‎6 or Chapter ‎7 of AML (as applicable);<br>(b) undertaking CDD in accordance with Rule ‎8.3.1;<br>(c) undertaking Enhanced CDD pursuant to Rule ‎8.1.1(3) in accordance with Rule ‎8.4.1; and<br>(d) undertaking Simplified CDD in accordance with Rule ‎8.5.1 where permissible pursuant to Rule ‎8.1.1(4).</code> |
281
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
282
+ ```json
283
+ {
284
+ "scale": 20.0,
285
+ "similarity_fct": "cos_sim"
286
+ }
287
+ ```
288
+
289
+ ### Training Hyperparameters
290
+ #### Non-Default Hyperparameters
291
+
292
+ - `per_device_train_batch_size`: 64
293
+ - `learning_rate`: 2e-05
294
+ - `num_train_epochs`: 5
295
+ - `warmup_ratio`: 0.1
296
+ - `batch_sampler`: no_duplicates
297
+
298
+ #### All Hyperparameters
299
+ <details><summary>Click to expand</summary>
300
+
301
+ - `overwrite_output_dir`: False
302
+ - `do_predict`: False
303
+ - `eval_strategy`: no
304
+ - `prediction_loss_only`: True
305
+ - `per_device_train_batch_size`: 64
306
+ - `per_device_eval_batch_size`: 8
307
+ - `per_gpu_train_batch_size`: None
308
+ - `per_gpu_eval_batch_size`: None
309
+ - `gradient_accumulation_steps`: 1
310
+ - `eval_accumulation_steps`: None
311
+ - `torch_empty_cache_steps`: None
312
+ - `learning_rate`: 2e-05
313
+ - `weight_decay`: 0.0
314
+ - `adam_beta1`: 0.9
315
+ - `adam_beta2`: 0.999
316
+ - `adam_epsilon`: 1e-08
317
+ - `max_grad_norm`: 1.0
318
+ - `num_train_epochs`: 5
319
+ - `max_steps`: -1
320
+ - `lr_scheduler_type`: linear
321
+ - `lr_scheduler_kwargs`: {}
322
+ - `warmup_ratio`: 0.1
323
+ - `warmup_steps`: 0
324
+ - `log_level`: passive
325
+ - `log_level_replica`: warning
326
+ - `log_on_each_node`: True
327
+ - `logging_nan_inf_filter`: True
328
+ - `save_safetensors`: True
329
+ - `save_on_each_node`: False
330
+ - `save_only_model`: False
331
+ - `restore_callback_states_from_checkpoint`: False
332
+ - `no_cuda`: False
333
+ - `use_cpu`: False
334
+ - `use_mps_device`: False
335
+ - `seed`: 42
336
+ - `data_seed`: None
337
+ - `jit_mode_eval`: False
338
+ - `use_ipex`: False
339
+ - `bf16`: False
340
+ - `fp16`: False
341
+ - `fp16_opt_level`: O1
342
+ - `half_precision_backend`: auto
343
+ - `bf16_full_eval`: False
344
+ - `fp16_full_eval`: False
345
+ - `tf32`: None
346
+ - `local_rank`: 0
347
+ - `ddp_backend`: None
348
+ - `tpu_num_cores`: None
349
+ - `tpu_metrics_debug`: False
350
+ - `debug`: []
351
+ - `dataloader_drop_last`: False
352
+ - `dataloader_num_workers`: 0
353
+ - `dataloader_prefetch_factor`: None
354
+ - `past_index`: -1
355
+ - `disable_tqdm`: False
356
+ - `remove_unused_columns`: True
357
+ - `label_names`: None
358
+ - `load_best_model_at_end`: False
359
+ - `ignore_data_skip`: False
360
+ - `fsdp`: []
361
+ - `fsdp_min_num_params`: 0
362
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
363
+ - `fsdp_transformer_layer_cls_to_wrap`: None
364
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
365
+ - `deepspeed`: None
366
+ - `label_smoothing_factor`: 0.0
367
+ - `optim`: adamw_torch
368
+ - `optim_args`: None
369
+ - `adafactor`: False
370
+ - `group_by_length`: False
371
+ - `length_column_name`: length
372
+ - `ddp_find_unused_parameters`: None
373
+ - `ddp_bucket_cap_mb`: None
374
+ - `ddp_broadcast_buffers`: False
375
+ - `dataloader_pin_memory`: True
376
+ - `dataloader_persistent_workers`: False
377
+ - `skip_memory_metrics`: True
378
+ - `use_legacy_prediction_loop`: False
379
+ - `push_to_hub`: False
380
+ - `resume_from_checkpoint`: None
381
+ - `hub_model_id`: None
382
+ - `hub_strategy`: every_save
383
+ - `hub_private_repo`: False
384
+ - `hub_always_push`: False
385
+ - `gradient_checkpointing`: False
386
+ - `gradient_checkpointing_kwargs`: None
387
+ - `include_inputs_for_metrics`: False
388
+ - `eval_do_concat_batches`: True
389
+ - `fp16_backend`: auto
390
+ - `push_to_hub_model_id`: None
391
+ - `push_to_hub_organization`: None
392
+ - `mp_parameters`:
393
+ - `auto_find_batch_size`: False
394
+ - `full_determinism`: False
395
+ - `torchdynamo`: None
396
+ - `ray_scope`: last
397
+ - `ddp_timeout`: 1800
398
+ - `torch_compile`: False
399
+ - `torch_compile_backend`: None
400
+ - `torch_compile_mode`: None
401
+ - `dispatch_batches`: None
402
+ - `split_batches`: None
403
+ - `include_tokens_per_second`: False
404
+ - `include_num_input_tokens_seen`: False
405
+ - `neftune_noise_alpha`: None
406
+ - `optim_target_modules`: None
407
+ - `batch_eval_metrics`: False
408
+ - `eval_on_start`: False
409
+ - `use_liger_kernel`: False
410
+ - `eval_use_gather_object`: False
411
+ - `batch_sampler`: no_duplicates
412
+ - `multi_dataset_batch_sampler`: proportional
413
+
414
+ </details>
415
+
416
+ ### Training Logs
417
+ | Epoch | Step | Training Loss |
418
+ |:------:|:----:|:-------------:|
419
+ | 0.4329 | 100 | 1.743 |
420
+ | 0.8658 | 200 | 1.2012 |
421
+ | 1.0346 | 300 | 0.5543 |
422
+ | 1.4675 | 400 | 1.1161 |
423
+ | 1.9004 | 500 | 1.0257 |
424
+ | 2.0693 | 600 | 0.4671 |
425
+ | 2.5022 | 700 | 0.998 |
426
+ | 2.9351 | 800 | 0.973 |
427
+ | 3.1039 | 900 | 0.4108 |
428
+ | 3.5368 | 1000 | 0.9453 |
429
+ | 3.9697 | 1100 | 0.9343 |
430
+
431
+
432
+ ### Framework Versions
433
+ - Python: 3.10.14
434
+ - Sentence Transformers: 3.1.1
435
+ - Transformers: 4.45.2
436
+ - PyTorch: 2.4.0
437
+ - Accelerate: 0.34.2
438
+ - Datasets: 3.0.1
439
+ - Tokenizers: 0.20.0
440
+
441
+ ## Citation
442
+
443
+ ### BibTeX
444
+
445
+ #### Sentence Transformers
446
+ ```bibtex
447
+ @inproceedings{reimers-2019-sentence-bert,
448
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
449
+ author = "Reimers, Nils and Gurevych, Iryna",
450
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
451
+ month = "11",
452
+ year = "2019",
453
+ publisher = "Association for Computational Linguistics",
454
+ url = "https://arxiv.org/abs/1908.10084",
455
+ }
456
+ ```
457
+
458
+ #### MultipleNegativesRankingLoss
459
+ ```bibtex
460
+ @misc{henderson2017efficient,
461
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
462
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
463
+ year={2017},
464
+ eprint={1705.00652},
465
+ archivePrefix={arXiv},
466
+ primaryClass={cs.CL}
467
+ }
468
+ ```
469
+
470
+ <!--
471
+ ## Glossary
472
+
473
+ *Clearly define terms in order to be accessible across audiences.*
474
+ -->
475
+
476
+ <!--
477
+ ## Model Card Authors
478
+
479
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
480
+ -->
481
+
482
+ <!--
483
+ ## Model Card Contact
484
+
485
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
486
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-small-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.45.2",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.4.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3bb2e47b37a0715df99c2adb2795c6270c817d349a3b0c2079303c27b57e9c5
3
+ size 133462128
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff