init
Browse files- README.md +68 -0
- adapter_config.json +34 -0
- adapter_model.safetensors +3 -0
- all_results.json +12 -0
- checkpoint-1000/README.md +202 -0
- checkpoint-1000/adapter_config.json +34 -0
- checkpoint-1000/adapter_model.safetensors +3 -0
- checkpoint-1000/global_step1000/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- checkpoint-1000/global_step1000/zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1000/global_step1000/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- checkpoint-1000/global_step1000/zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1000/global_step1000/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
- checkpoint-1000/global_step1000/zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1000/global_step1000/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
- checkpoint-1000/global_step1000/zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1000/latest +1 -0
- checkpoint-1000/rng_state_0.pth +3 -0
- checkpoint-1000/rng_state_1.pth +3 -0
- checkpoint-1000/rng_state_2.pth +3 -0
- checkpoint-1000/rng_state_3.pth +3 -0
- checkpoint-1000/scheduler.pt +3 -0
- checkpoint-1000/special_tokens_map.json +24 -0
- checkpoint-1000/tokenizer.json +0 -0
- checkpoint-1000/tokenizer.model +3 -0
- checkpoint-1000/tokenizer_config.json +45 -0
- checkpoint-1000/trainer_state.json +749 -0
- checkpoint-1000/training_args.bin +3 -0
- checkpoint-1000/zero_to_fp32.py +604 -0
- eval_results.json +7 -0
- special_tokens_map.json +24 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +45 -0
- train_results.json +8 -0
- trainer_log.jsonl +138 -0
- trainer_state.json +1003 -0
- training_args.bin +3 -0
- training_eval_loss.png +0 -0
- training_loss.png +0 -0
README.md
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
library_name: peft
|
4 |
+
tags:
|
5 |
+
- llama-factory
|
6 |
+
- lora
|
7 |
+
- generated_from_trainer
|
8 |
+
base_model: mistralai/Mistral-7B-Instruct-v0.2
|
9 |
+
model-index:
|
10 |
+
- name: Mistral-7b_5000_8epoch_lora
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# Mistral-7b_5000_8epoch_lora
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the advbench_sft_malicious dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.8734
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 0.0001
|
41 |
+
- train_batch_size: 2
|
42 |
+
- eval_batch_size: 1
|
43 |
+
- seed: 42
|
44 |
+
- distributed_type: multi-GPU
|
45 |
+
- num_devices: 4
|
46 |
+
- gradient_accumulation_steps: 4
|
47 |
+
- total_train_batch_size: 32
|
48 |
+
- total_eval_batch_size: 4
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: cosine
|
51 |
+
- num_epochs: 8.0
|
52 |
+
- mixed_precision_training: Native AMP
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
57 |
+
|:-------------:|:------:|:----:|:---------------:|
|
58 |
+
| 0.3101 | 2.9542 | 500 | 0.4940 |
|
59 |
+
| 0.0918 | 5.9084 | 1000 | 0.7312 |
|
60 |
+
|
61 |
+
|
62 |
+
### Framework versions
|
63 |
+
|
64 |
+
- PEFT 0.11.1
|
65 |
+
- Transformers 4.41.2
|
66 |
+
- Pytorch 2.3.1+cu121
|
67 |
+
- Datasets 2.19.2
|
68 |
+
- Tokenizers 0.19.1
|
adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.2",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 16,
|
14 |
+
"lora_dropout": 0.0,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"gate_proj",
|
24 |
+
"up_proj",
|
25 |
+
"k_proj",
|
26 |
+
"down_proj",
|
27 |
+
"o_proj",
|
28 |
+
"v_proj",
|
29 |
+
"q_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e46a888997d55b5ee05c2a590a771639dd2fc91dd84b39ea2729268d8bccb278
|
3 |
+
size 42002136
|
all_results.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 7.988183161004431,
|
3 |
+
"eval_loss": 0.8734431862831116,
|
4 |
+
"eval_runtime": 52.5704,
|
5 |
+
"eval_samples_per_second": 2.111,
|
6 |
+
"eval_steps_per_second": 0.533,
|
7 |
+
"total_flos": 1435586865135616.0,
|
8 |
+
"train_loss": 0.22072081432606167,
|
9 |
+
"train_runtime": 22818.9262,
|
10 |
+
"train_samples_per_second": 1.896,
|
11 |
+
"train_steps_per_second": 0.059
|
12 |
+
}
|
checkpoint-1000/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: mistralai/Mistral-7B-Instruct-v0.2
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.11.1
|
checkpoint-1000/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.2",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 16,
|
14 |
+
"lora_dropout": 0.0,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"gate_proj",
|
24 |
+
"up_proj",
|
25 |
+
"k_proj",
|
26 |
+
"down_proj",
|
27 |
+
"o_proj",
|
28 |
+
"v_proj",
|
29 |
+
"q_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
checkpoint-1000/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d8158a0cefdf16f8ff8897fccfc3b82bbfa8bb515879844d32a8b2f923e5749d
|
3 |
+
size 42002136
|
checkpoint-1000/global_step1000/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ebaaef666b7b2aeb07cdfbd69562c2265512c7a72cfa5852a5b5654da9f816c
|
3 |
+
size 425070
|
checkpoint-1000/global_step1000/zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ed779a8897cda6945df3def88b7abd2a6f8ad6e7d56840ebb9916c58fc9ada3
|
3 |
+
size 62918600
|
checkpoint-1000/global_step1000/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:136712c6e13dbae5bc5cd271fc43853555abc8ca876650697f0a0233957f8056
|
3 |
+
size 425070
|
checkpoint-1000/global_step1000/zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8cb9eb8e01a34204925e262b2828bc85f92ac3e69a471f94b4e91261f3528bf0
|
3 |
+
size 62918600
|
checkpoint-1000/global_step1000/zero_pp_rank_2_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:663a6d99f0b1148e533a3711a773de08c6825750fdf0117c9175a0d8b80b1507
|
3 |
+
size 425070
|
checkpoint-1000/global_step1000/zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:60a2dabb61276b0f2a8c43f4dfa40cb08e88d7bee39c8be744d6593991bc68df
|
3 |
+
size 62918600
|
checkpoint-1000/global_step1000/zero_pp_rank_3_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d43209cd9bd6f8c409515946bce50f6491a7b49f117e577b9b82f9d7f3122286
|
3 |
+
size 425070
|
checkpoint-1000/global_step1000/zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae50ec80e67a0f92ff015d127b037df59c1062196b78264035a192dcfc1108e5
|
3 |
+
size 62918600
|
checkpoint-1000/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step1000
|
checkpoint-1000/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee97cd82dba4d425fdd8dfdb88d4a43d0d4b1979b5c81ab4a24914fb00d4f332
|
3 |
+
size 15024
|
checkpoint-1000/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91dad95440fb85dc4a31745642117165c1a72173b2e389679ea8c0b2b6fcd7e2
|
3 |
+
size 15024
|
checkpoint-1000/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98698326b023c2af02c94f18726ce52c7f7a6fe290734dd7edbe99bc807fcfa0
|
3 |
+
size 15024
|
checkpoint-1000/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:708e7c6b5bf8a327e688779ebc08830ce249928bcb1ff5c82b1b1d0bf6d2660b
|
3 |
+
size 15024
|
checkpoint-1000/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:017e3823021c92614a8748b0ba13d32c7edd9b19c342e69c1c85e0c533ef0a7f
|
3 |
+
size 1064
|
checkpoint-1000/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "</s>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
checkpoint-1000/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-1000/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
3 |
+
size 493443
|
checkpoint-1000/tokenizer_config.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"additional_special_tokens": [],
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{{ '<s>' + system_message }}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ ' [INST] ' + content + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ content + '</s>' }}{% endif %}{% endfor %}",
|
33 |
+
"clean_up_tokenization_spaces": false,
|
34 |
+
"eos_token": "</s>",
|
35 |
+
"legacy": false,
|
36 |
+
"model_max_length": 1000000000000000019884624838656,
|
37 |
+
"pad_token": "</s>",
|
38 |
+
"padding_side": "right",
|
39 |
+
"sp_model_kwargs": {},
|
40 |
+
"spaces_between_special_tokens": false,
|
41 |
+
"split_special_tokens": false,
|
42 |
+
"tokenizer_class": "LlamaTokenizer",
|
43 |
+
"unk_token": "<unk>",
|
44 |
+
"use_default_system_prompt": false
|
45 |
+
}
|
checkpoint-1000/trainer_state.json
ADDED
@@ -0,0 +1,749 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 5.908419497784343,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 1000,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.059084194977843424,
|
13 |
+
"grad_norm": 0.6387189059092414,
|
14 |
+
"learning_rate": 9.998650208062712e-05,
|
15 |
+
"loss": 0.6972,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.11816838995568685,
|
20 |
+
"grad_norm": 0.48601036335500336,
|
21 |
+
"learning_rate": 9.994601561026155e-05,
|
22 |
+
"loss": 0.5423,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.17725258493353027,
|
27 |
+
"grad_norm": 0.40437591619558344,
|
28 |
+
"learning_rate": 9.98785624482278e-05,
|
29 |
+
"loss": 0.5149,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.2363367799113737,
|
34 |
+
"grad_norm": 0.5030211090458666,
|
35 |
+
"learning_rate": 9.978417901361958e-05,
|
36 |
+
"loss": 0.513,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.29542097488921715,
|
41 |
+
"grad_norm": 0.49098083558596206,
|
42 |
+
"learning_rate": 9.96629162656365e-05,
|
43 |
+
"loss": 0.4957,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.35450516986706054,
|
48 |
+
"grad_norm": 0.6329012343929873,
|
49 |
+
"learning_rate": 9.951483967607041e-05,
|
50 |
+
"loss": 0.495,
|
51 |
+
"step": 60
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.413589364844904,
|
55 |
+
"grad_norm": 0.48252149699962754,
|
56 |
+
"learning_rate": 9.934002919395592e-05,
|
57 |
+
"loss": 0.4943,
|
58 |
+
"step": 70
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.4726735598227474,
|
62 |
+
"grad_norm": 0.5221971068930835,
|
63 |
+
"learning_rate": 9.91385792024048e-05,
|
64 |
+
"loss": 0.4738,
|
65 |
+
"step": 80
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.5317577548005908,
|
69 |
+
"grad_norm": 0.42549092560536134,
|
70 |
+
"learning_rate": 9.891059846764679e-05,
|
71 |
+
"loss": 0.4565,
|
72 |
+
"step": 90
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.5908419497784343,
|
76 |
+
"grad_norm": 0.4606171719652433,
|
77 |
+
"learning_rate": 9.865621008030492e-05,
|
78 |
+
"loss": 0.4674,
|
79 |
+
"step": 100
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.6499261447562777,
|
83 |
+
"grad_norm": 0.46353540699946943,
|
84 |
+
"learning_rate": 9.83755513889369e-05,
|
85 |
+
"loss": 0.4727,
|
86 |
+
"step": 110
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.7090103397341211,
|
90 |
+
"grad_norm": 0.4815928480268326,
|
91 |
+
"learning_rate": 9.80687739258782e-05,
|
92 |
+
"loss": 0.4736,
|
93 |
+
"step": 120
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.7680945347119645,
|
97 |
+
"grad_norm": 0.485838392040906,
|
98 |
+
"learning_rate": 9.773604332542729e-05,
|
99 |
+
"loss": 0.47,
|
100 |
+
"step": 130
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.827178729689808,
|
104 |
+
"grad_norm": 0.5025850953484241,
|
105 |
+
"learning_rate": 9.737753923441688e-05,
|
106 |
+
"loss": 0.467,
|
107 |
+
"step": 140
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.8862629246676514,
|
111 |
+
"grad_norm": 0.45997226542102815,
|
112 |
+
"learning_rate": 9.69934552152196e-05,
|
113 |
+
"loss": 0.4522,
|
114 |
+
"step": 150
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.9453471196454948,
|
118 |
+
"grad_norm": 0.4546309634161405,
|
119 |
+
"learning_rate": 9.658399864124037e-05,
|
120 |
+
"loss": 0.4613,
|
121 |
+
"step": 160
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0044313146233383,
|
125 |
+
"grad_norm": 0.6577670848472944,
|
126 |
+
"learning_rate": 9.61493905849521e-05,
|
127 |
+
"loss": 0.4641,
|
128 |
+
"step": 170
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 1.0635155096011817,
|
132 |
+
"grad_norm": 0.5743711541659764,
|
133 |
+
"learning_rate": 9.568986569853487e-05,
|
134 |
+
"loss": 0.3946,
|
135 |
+
"step": 180
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 1.122599704579025,
|
139 |
+
"grad_norm": 0.5374571463070855,
|
140 |
+
"learning_rate": 9.520567208718337e-05,
|
141 |
+
"loss": 0.3882,
|
142 |
+
"step": 190
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 1.1816838995568686,
|
146 |
+
"grad_norm": 0.6531134738909915,
|
147 |
+
"learning_rate": 9.469707117515067e-05,
|
148 |
+
"loss": 0.4205,
|
149 |
+
"step": 200
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 1.240768094534712,
|
153 |
+
"grad_norm": 0.5201345622237219,
|
154 |
+
"learning_rate": 9.416433756460091e-05,
|
155 |
+
"loss": 0.386,
|
156 |
+
"step": 210
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 1.2998522895125553,
|
160 |
+
"grad_norm": 0.7267530776250423,
|
161 |
+
"learning_rate": 9.360775888734698e-05,
|
162 |
+
"loss": 0.4096,
|
163 |
+
"step": 220
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 1.3589364844903988,
|
167 |
+
"grad_norm": 0.5480147887972682,
|
168 |
+
"learning_rate": 9.302763564955331e-05,
|
169 |
+
"loss": 0.3921,
|
170 |
+
"step": 230
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 1.4180206794682422,
|
174 |
+
"grad_norm": 0.6228502280992079,
|
175 |
+
"learning_rate": 9.242428106948749e-05,
|
176 |
+
"loss": 0.3788,
|
177 |
+
"step": 240
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 1.4771048744460857,
|
181 |
+
"grad_norm": 0.7119116813192373,
|
182 |
+
"learning_rate": 9.179802090840853e-05,
|
183 |
+
"loss": 0.3894,
|
184 |
+
"step": 250
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 1.536189069423929,
|
188 |
+
"grad_norm": 0.5987495739217404,
|
189 |
+
"learning_rate": 9.114919329468282e-05,
|
190 |
+
"loss": 0.3707,
|
191 |
+
"step": 260
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 1.5952732644017726,
|
195 |
+
"grad_norm": 0.6278387167291306,
|
196 |
+
"learning_rate": 9.04781485412231e-05,
|
197 |
+
"loss": 0.3938,
|
198 |
+
"step": 270
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 1.654357459379616,
|
202 |
+
"grad_norm": 0.5312391005336979,
|
203 |
+
"learning_rate": 8.978524895634842e-05,
|
204 |
+
"loss": 0.3799,
|
205 |
+
"step": 280
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 1.7134416543574593,
|
209 |
+
"grad_norm": 0.7329625126762797,
|
210 |
+
"learning_rate": 8.907086864816803e-05,
|
211 |
+
"loss": 0.403,
|
212 |
+
"step": 290
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 1.7725258493353029,
|
216 |
+
"grad_norm": 0.5600401734580108,
|
217 |
+
"learning_rate": 8.833539332259398e-05,
|
218 |
+
"loss": 0.3758,
|
219 |
+
"step": 300
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 1.8316100443131462,
|
223 |
+
"grad_norm": 0.503395394356135,
|
224 |
+
"learning_rate": 8.757922007509207e-05,
|
225 |
+
"loss": 0.3963,
|
226 |
+
"step": 310
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 1.8906942392909896,
|
230 |
+
"grad_norm": 0.6324775953771359,
|
231 |
+
"learning_rate": 8.680275717628337e-05,
|
232 |
+
"loss": 0.3858,
|
233 |
+
"step": 320
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 1.9497784342688331,
|
237 |
+
"grad_norm": 0.5574107174736728,
|
238 |
+
"learning_rate": 8.600642385151205e-05,
|
239 |
+
"loss": 0.3799,
|
240 |
+
"step": 330
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 2.0088626292466767,
|
244 |
+
"grad_norm": 0.5250864362886176,
|
245 |
+
"learning_rate": 8.519065005449858e-05,
|
246 |
+
"loss": 0.3763,
|
247 |
+
"step": 340
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 2.06794682422452,
|
251 |
+
"grad_norm": 0.7754155552722259,
|
252 |
+
"learning_rate": 8.43558762352005e-05,
|
253 |
+
"loss": 0.2934,
|
254 |
+
"step": 350
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 2.1270310192023634,
|
258 |
+
"grad_norm": 0.6889925166837503,
|
259 |
+
"learning_rate": 8.350255310200612e-05,
|
260 |
+
"loss": 0.3078,
|
261 |
+
"step": 360
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 2.186115214180207,
|
265 |
+
"grad_norm": 0.6281519102970855,
|
266 |
+
"learning_rate": 8.263114137838947e-05,
|
267 |
+
"loss": 0.3028,
|
268 |
+
"step": 370
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 2.24519940915805,
|
272 |
+
"grad_norm": 0.7619069663070173,
|
273 |
+
"learning_rate": 8.174211155415799e-05,
|
274 |
+
"loss": 0.2972,
|
275 |
+
"step": 380
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 2.3042836041358936,
|
279 |
+
"grad_norm": 0.6469214076306162,
|
280 |
+
"learning_rate": 8.083594363142717e-05,
|
281 |
+
"loss": 0.2995,
|
282 |
+
"step": 390
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 2.363367799113737,
|
286 |
+
"grad_norm": 0.7761443706661119,
|
287 |
+
"learning_rate": 7.991312686545937e-05,
|
288 |
+
"loss": 0.2963,
|
289 |
+
"step": 400
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 2.4224519940915803,
|
293 |
+
"grad_norm": 0.6652219653359559,
|
294 |
+
"learning_rate": 7.897415950050676e-05,
|
295 |
+
"loss": 0.2987,
|
296 |
+
"step": 410
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 2.481536189069424,
|
300 |
+
"grad_norm": 0.7586700003856579,
|
301 |
+
"learning_rate": 7.801954850080075e-05,
|
302 |
+
"loss": 0.3092,
|
303 |
+
"step": 420
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 2.5406203840472674,
|
307 |
+
"grad_norm": 0.6663785963305503,
|
308 |
+
"learning_rate": 7.704980927683359e-05,
|
309 |
+
"loss": 0.2951,
|
310 |
+
"step": 430
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 2.5997045790251105,
|
314 |
+
"grad_norm": 0.6913254608481674,
|
315 |
+
"learning_rate": 7.60654654070796e-05,
|
316 |
+
"loss": 0.3097,
|
317 |
+
"step": 440
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 2.658788774002954,
|
321 |
+
"grad_norm": 0.6943652391419598,
|
322 |
+
"learning_rate": 7.506704835530634e-05,
|
323 |
+
"loss": 0.2999,
|
324 |
+
"step": 450
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.7178729689807977,
|
328 |
+
"grad_norm": 0.644096596125316,
|
329 |
+
"learning_rate": 7.405509718362842e-05,
|
330 |
+
"loss": 0.2905,
|
331 |
+
"step": 460
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.7769571639586412,
|
335 |
+
"grad_norm": 0.7660517390503399,
|
336 |
+
"learning_rate": 7.303015826145885e-05,
|
337 |
+
"loss": 0.309,
|
338 |
+
"step": 470
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 2.8360413589364843,
|
342 |
+
"grad_norm": 0.7708918433168639,
|
343 |
+
"learning_rate": 7.199278497051498e-05,
|
344 |
+
"loss": 0.302,
|
345 |
+
"step": 480
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 2.895125553914328,
|
349 |
+
"grad_norm": 0.626692120748867,
|
350 |
+
"learning_rate": 7.094353740603839e-05,
|
351 |
+
"loss": 0.297,
|
352 |
+
"step": 490
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 2.9542097488921715,
|
356 |
+
"grad_norm": 0.7926892798861292,
|
357 |
+
"learning_rate": 6.988298207439021e-05,
|
358 |
+
"loss": 0.3101,
|
359 |
+
"step": 500
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 2.9542097488921715,
|
363 |
+
"eval_loss": 0.4939613938331604,
|
364 |
+
"eval_runtime": 53.5552,
|
365 |
+
"eval_samples_per_second": 2.073,
|
366 |
+
"eval_steps_per_second": 0.523,
|
367 |
+
"step": 500
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 3.0132939438700146,
|
371 |
+
"grad_norm": 0.5747285632843896,
|
372 |
+
"learning_rate": 6.881169158718474e-05,
|
373 |
+
"loss": 0.2736,
|
374 |
+
"step": 510
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 3.072378138847858,
|
378 |
+
"grad_norm": 0.7661842329328333,
|
379 |
+
"learning_rate": 6.773024435212678e-05,
|
380 |
+
"loss": 0.2187,
|
381 |
+
"step": 520
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 3.1314623338257017,
|
385 |
+
"grad_norm": 0.8401289392682185,
|
386 |
+
"learning_rate": 6.663922426071977e-05,
|
387 |
+
"loss": 0.2057,
|
388 |
+
"step": 530
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 3.1905465288035453,
|
392 |
+
"grad_norm": 0.7506650372127406,
|
393 |
+
"learning_rate": 6.553922037301283e-05,
|
394 |
+
"loss": 0.2067,
|
395 |
+
"step": 540
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 3.2496307237813884,
|
399 |
+
"grad_norm": 0.7842941173009434,
|
400 |
+
"learning_rate": 6.443082659955738e-05,
|
401 |
+
"loss": 0.1989,
|
402 |
+
"step": 550
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 3.308714918759232,
|
406 |
+
"grad_norm": 0.7593744868915973,
|
407 |
+
"learning_rate": 6.331464138074493e-05,
|
408 |
+
"loss": 0.2179,
|
409 |
+
"step": 560
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 3.3677991137370755,
|
413 |
+
"grad_norm": 0.756091123285611,
|
414 |
+
"learning_rate": 6.219126736369903e-05,
|
415 |
+
"loss": 0.2176,
|
416 |
+
"step": 570
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 3.4268833087149186,
|
420 |
+
"grad_norm": 0.7869512689224245,
|
421 |
+
"learning_rate": 6.106131107689599e-05,
|
422 |
+
"loss": 0.2215,
|
423 |
+
"step": 580
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 3.485967503692762,
|
427 |
+
"grad_norm": 0.7636724676762149,
|
428 |
+
"learning_rate": 5.9925382602689974e-05,
|
429 |
+
"loss": 0.2153,
|
430 |
+
"step": 590
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"epoch": 3.5450516986706058,
|
434 |
+
"grad_norm": 0.6815318566179079,
|
435 |
+
"learning_rate": 5.8784095247919305e-05,
|
436 |
+
"loss": 0.2133,
|
437 |
+
"step": 600
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 3.604135893648449,
|
441 |
+
"grad_norm": 0.7848948829508617,
|
442 |
+
"learning_rate": 5.763806521277184e-05,
|
443 |
+
"loss": 0.2109,
|
444 |
+
"step": 610
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 3.6632200886262924,
|
448 |
+
"grad_norm": 0.7715200213470335,
|
449 |
+
"learning_rate": 5.648791125808809e-05,
|
450 |
+
"loss": 0.2214,
|
451 |
+
"step": 620
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 3.722304283604136,
|
455 |
+
"grad_norm": 0.6480973448749833,
|
456 |
+
"learning_rate": 5.5334254371281934e-05,
|
457 |
+
"loss": 0.212,
|
458 |
+
"step": 630
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 3.781388478581979,
|
462 |
+
"grad_norm": 0.6618796234383102,
|
463 |
+
"learning_rate": 5.417771743105907e-05,
|
464 |
+
"loss": 0.2196,
|
465 |
+
"step": 640
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 3.8404726735598227,
|
469 |
+
"grad_norm": 0.9462710180746308,
|
470 |
+
"learning_rate": 5.3018924871114305e-05,
|
471 |
+
"loss": 0.2145,
|
472 |
+
"step": 650
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"epoch": 3.8995568685376663,
|
476 |
+
"grad_norm": 0.7674586984793125,
|
477 |
+
"learning_rate": 5.185850234298942e-05,
|
478 |
+
"loss": 0.2199,
|
479 |
+
"step": 660
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 3.9586410635155094,
|
483 |
+
"grad_norm": 0.8420752213128357,
|
484 |
+
"learning_rate": 5.0697076378273354e-05,
|
485 |
+
"loss": 0.218,
|
486 |
+
"step": 670
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"epoch": 4.017725258493353,
|
490 |
+
"grad_norm": 0.6235542870137168,
|
491 |
+
"learning_rate": 4.953527405032723e-05,
|
492 |
+
"loss": 0.1987,
|
493 |
+
"step": 680
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"epoch": 4.0768094534711965,
|
497 |
+
"grad_norm": 0.8247620064480204,
|
498 |
+
"learning_rate": 4.8373722635717086e-05,
|
499 |
+
"loss": 0.1425,
|
500 |
+
"step": 690
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 4.13589364844904,
|
504 |
+
"grad_norm": 0.806070554149328,
|
505 |
+
"learning_rate": 4.721304927553658e-05,
|
506 |
+
"loss": 0.1313,
|
507 |
+
"step": 700
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 4.194977843426884,
|
511 |
+
"grad_norm": 1.1960115947293068,
|
512 |
+
"learning_rate": 4.60538806368031e-05,
|
513 |
+
"loss": 0.1397,
|
514 |
+
"step": 710
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"epoch": 4.254062038404727,
|
518 |
+
"grad_norm": 0.7571134276917469,
|
519 |
+
"learning_rate": 4.489684257410958e-05,
|
520 |
+
"loss": 0.1421,
|
521 |
+
"step": 720
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 4.31314623338257,
|
525 |
+
"grad_norm": 0.8865025891479803,
|
526 |
+
"learning_rate": 4.374255979171538e-05,
|
527 |
+
"loss": 0.1386,
|
528 |
+
"step": 730
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"epoch": 4.372230428360414,
|
532 |
+
"grad_norm": 0.9290220213968287,
|
533 |
+
"learning_rate": 4.2591655506257645e-05,
|
534 |
+
"loss": 0.1444,
|
535 |
+
"step": 740
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"epoch": 4.431314623338257,
|
539 |
+
"grad_norm": 0.8896418597603776,
|
540 |
+
"learning_rate": 4.144475111026643e-05,
|
541 |
+
"loss": 0.1391,
|
542 |
+
"step": 750
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 4.4903988183161,
|
546 |
+
"grad_norm": 0.9053211649213782,
|
547 |
+
"learning_rate": 4.030246583666437e-05,
|
548 |
+
"loss": 0.1438,
|
549 |
+
"step": 760
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 4.549483013293944,
|
553 |
+
"grad_norm": 0.8453862385052026,
|
554 |
+
"learning_rate": 3.9165416424432414e-05,
|
555 |
+
"loss": 0.1415,
|
556 |
+
"step": 770
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 4.608567208271787,
|
560 |
+
"grad_norm": 0.8724405655899441,
|
561 |
+
"learning_rate": 3.803421678562213e-05,
|
562 |
+
"loss": 0.1492,
|
563 |
+
"step": 780
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 4.66765140324963,
|
567 |
+
"grad_norm": 0.98302153579186,
|
568 |
+
"learning_rate": 3.690947767389426e-05,
|
569 |
+
"loss": 0.1512,
|
570 |
+
"step": 790
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 4.726735598227474,
|
574 |
+
"grad_norm": 0.8137008256198869,
|
575 |
+
"learning_rate": 3.57918063547627e-05,
|
576 |
+
"loss": 0.1481,
|
577 |
+
"step": 800
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"epoch": 4.7858197932053175,
|
581 |
+
"grad_norm": 0.8604546990181478,
|
582 |
+
"learning_rate": 3.468180627772144e-05,
|
583 |
+
"loss": 0.1418,
|
584 |
+
"step": 810
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 4.844903988183161,
|
588 |
+
"grad_norm": 0.8028241587093687,
|
589 |
+
"learning_rate": 3.358007675043224e-05,
|
590 |
+
"loss": 0.146,
|
591 |
+
"step": 820
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 4.903988183161005,
|
595 |
+
"grad_norm": 0.8209334713352179,
|
596 |
+
"learning_rate": 3.2487212615148316e-05,
|
597 |
+
"loss": 0.1407,
|
598 |
+
"step": 830
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"epoch": 4.963072378138848,
|
602 |
+
"grad_norm": 0.9318035909918932,
|
603 |
+
"learning_rate": 3.1403803927549006e-05,
|
604 |
+
"loss": 0.1502,
|
605 |
+
"step": 840
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"epoch": 5.022156573116692,
|
609 |
+
"grad_norm": 0.6982555180872486,
|
610 |
+
"learning_rate": 3.0330435638158806e-05,
|
611 |
+
"loss": 0.1322,
|
612 |
+
"step": 850
|
613 |
+
},
|
614 |
+
{
|
615 |
+
"epoch": 5.081240768094535,
|
616 |
+
"grad_norm": 0.9099529668785485,
|
617 |
+
"learning_rate": 2.9267687276522876e-05,
|
618 |
+
"loss": 0.0985,
|
619 |
+
"step": 860
|
620 |
+
},
|
621 |
+
{
|
622 |
+
"epoch": 5.140324963072378,
|
623 |
+
"grad_norm": 0.8093436219539469,
|
624 |
+
"learning_rate": 2.821613263830912e-05,
|
625 |
+
"loss": 0.0929,
|
626 |
+
"step": 870
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 5.199409158050222,
|
630 |
+
"grad_norm": 0.908675419764728,
|
631 |
+
"learning_rate": 2.717633947550651e-05,
|
632 |
+
"loss": 0.0941,
|
633 |
+
"step": 880
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 5.258493353028065,
|
637 |
+
"grad_norm": 0.9144782506889362,
|
638 |
+
"learning_rate": 2.614886918988604e-05,
|
639 |
+
"loss": 0.0951,
|
640 |
+
"step": 890
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"epoch": 5.317577548005908,
|
644 |
+
"grad_norm": 0.8302439773379418,
|
645 |
+
"learning_rate": 2.5134276529890644e-05,
|
646 |
+
"loss": 0.0926,
|
647 |
+
"step": 900
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"epoch": 5.376661742983752,
|
651 |
+
"grad_norm": 0.8145999759475107,
|
652 |
+
"learning_rate": 2.4133109291117156e-05,
|
653 |
+
"loss": 0.095,
|
654 |
+
"step": 910
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 5.435745937961595,
|
658 |
+
"grad_norm": 0.7459552675334057,
|
659 |
+
"learning_rate": 2.314590802055232e-05,
|
660 |
+
"loss": 0.0886,
|
661 |
+
"step": 920
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 5.4948301329394384,
|
665 |
+
"grad_norm": 0.9033419203896008,
|
666 |
+
"learning_rate": 2.2173205724722318e-05,
|
667 |
+
"loss": 0.096,
|
668 |
+
"step": 930
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 5.5539143279172825,
|
672 |
+
"grad_norm": 0.882377183289936,
|
673 |
+
"learning_rate": 2.121552758191366e-05,
|
674 |
+
"loss": 0.0962,
|
675 |
+
"step": 940
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 5.612998522895126,
|
679 |
+
"grad_norm": 0.8033415953079253,
|
680 |
+
"learning_rate": 2.027339065862064e-05,
|
681 |
+
"loss": 0.0985,
|
682 |
+
"step": 950
|
683 |
+
},
|
684 |
+
{
|
685 |
+
"epoch": 5.672082717872969,
|
686 |
+
"grad_norm": 0.9269892443045443,
|
687 |
+
"learning_rate": 1.934730363037237e-05,
|
688 |
+
"loss": 0.0939,
|
689 |
+
"step": 960
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"epoch": 5.731166912850813,
|
693 |
+
"grad_norm": 0.8483635995759108,
|
694 |
+
"learning_rate": 1.843776650709046e-05,
|
695 |
+
"loss": 0.0975,
|
696 |
+
"step": 970
|
697 |
+
},
|
698 |
+
{
|
699 |
+
"epoch": 5.790251107828656,
|
700 |
+
"grad_norm": 0.7664349269568396,
|
701 |
+
"learning_rate": 1.7545270363125153e-05,
|
702 |
+
"loss": 0.093,
|
703 |
+
"step": 980
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"epoch": 5.849335302806499,
|
707 |
+
"grad_norm": 0.7270945706246518,
|
708 |
+
"learning_rate": 1.6670297072116165e-05,
|
709 |
+
"loss": 0.0959,
|
710 |
+
"step": 990
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 5.908419497784343,
|
714 |
+
"grad_norm": 0.4763779090409354,
|
715 |
+
"learning_rate": 1.581331904682089e-05,
|
716 |
+
"loss": 0.0918,
|
717 |
+
"step": 1000
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 5.908419497784343,
|
721 |
+
"eval_loss": 0.7311862707138062,
|
722 |
+
"eval_runtime": 52.641,
|
723 |
+
"eval_samples_per_second": 2.109,
|
724 |
+
"eval_steps_per_second": 0.532,
|
725 |
+
"step": 1000
|
726 |
+
}
|
727 |
+
],
|
728 |
+
"logging_steps": 10,
|
729 |
+
"max_steps": 1352,
|
730 |
+
"num_input_tokens_seen": 0,
|
731 |
+
"num_train_epochs": 8,
|
732 |
+
"save_steps": 1000,
|
733 |
+
"stateful_callbacks": {
|
734 |
+
"TrainerControl": {
|
735 |
+
"args": {
|
736 |
+
"should_epoch_stop": false,
|
737 |
+
"should_evaluate": false,
|
738 |
+
"should_log": false,
|
739 |
+
"should_save": true,
|
740 |
+
"should_training_stop": false
|
741 |
+
},
|
742 |
+
"attributes": {}
|
743 |
+
}
|
744 |
+
},
|
745 |
+
"total_flos": 1062799032713216.0,
|
746 |
+
"train_batch_size": 2,
|
747 |
+
"trial_name": null,
|
748 |
+
"trial_params": null
|
749 |
+
}
|
checkpoint-1000/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:899f0486eced747a2f123ddafb9d6fecbc5fefa74f8054cc454aa966f7165bc2
|
3 |
+
size 6968
|
checkpoint-1000/zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
eval_results.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 7.988183161004431,
|
3 |
+
"eval_loss": 0.8734431862831116,
|
4 |
+
"eval_runtime": 52.5704,
|
5 |
+
"eval_samples_per_second": 2.111,
|
6 |
+
"eval_steps_per_second": 0.533
|
7 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "</s>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
3 |
+
size 493443
|
tokenizer_config.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"additional_special_tokens": [],
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{{ '<s>' + system_message }}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ ' [INST] ' + content + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ content + '</s>' }}{% endif %}{% endfor %}",
|
33 |
+
"clean_up_tokenization_spaces": false,
|
34 |
+
"eos_token": "</s>",
|
35 |
+
"legacy": false,
|
36 |
+
"model_max_length": 1000000000000000019884624838656,
|
37 |
+
"pad_token": "</s>",
|
38 |
+
"padding_side": "right",
|
39 |
+
"sp_model_kwargs": {},
|
40 |
+
"spaces_between_special_tokens": false,
|
41 |
+
"split_special_tokens": false,
|
42 |
+
"tokenizer_class": "LlamaTokenizer",
|
43 |
+
"unk_token": "<unk>",
|
44 |
+
"use_default_system_prompt": false
|
45 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 7.988183161004431,
|
3 |
+
"total_flos": 1435586865135616.0,
|
4 |
+
"train_loss": 0.22072081432606167,
|
5 |
+
"train_runtime": 22818.9262,
|
6 |
+
"train_samples_per_second": 1.896,
|
7 |
+
"train_steps_per_second": 0.059
|
8 |
+
}
|
trainer_log.jsonl
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{"current_steps": 10, "total_steps": 1352, "loss": 0.6972, "learning_rate": 9.998650208062712e-05, "epoch": 0.059084194977843424, "percentage": 0.74, "elapsed_time": "0:02:55", "remaining_time": "6:31:38"}
|
2 |
+
{"current_steps": 20, "total_steps": 1352, "loss": 0.5423, "learning_rate": 9.994601561026155e-05, "epoch": 0.11816838995568685, "percentage": 1.48, "elapsed_time": "0:05:43", "remaining_time": "6:21:30"}
|
3 |
+
{"current_steps": 30, "total_steps": 1352, "loss": 0.5149, "learning_rate": 9.98785624482278e-05, "epoch": 0.17725258493353027, "percentage": 2.22, "elapsed_time": "0:08:36", "remaining_time": "6:18:58"}
|
4 |
+
{"current_steps": 40, "total_steps": 1352, "loss": 0.513, "learning_rate": 9.978417901361958e-05, "epoch": 0.2363367799113737, "percentage": 2.96, "elapsed_time": "0:11:26", "remaining_time": "6:15:08"}
|
5 |
+
{"current_steps": 50, "total_steps": 1352, "loss": 0.4957, "learning_rate": 9.96629162656365e-05, "epoch": 0.29542097488921715, "percentage": 3.7, "elapsed_time": "0:14:14", "remaining_time": "6:10:46"}
|
6 |
+
{"current_steps": 60, "total_steps": 1352, "loss": 0.495, "learning_rate": 9.951483967607041e-05, "epoch": 0.35450516986706054, "percentage": 4.44, "elapsed_time": "0:17:01", "remaining_time": "6:06:31"}
|
7 |
+
{"current_steps": 70, "total_steps": 1352, "loss": 0.4943, "learning_rate": 9.934002919395592e-05, "epoch": 0.413589364844904, "percentage": 5.18, "elapsed_time": "0:19:47", "remaining_time": "6:02:28"}
|
8 |
+
{"current_steps": 80, "total_steps": 1352, "loss": 0.4738, "learning_rate": 9.91385792024048e-05, "epoch": 0.4726735598227474, "percentage": 5.92, "elapsed_time": "0:22:37", "remaining_time": "5:59:41"}
|
9 |
+
{"current_steps": 90, "total_steps": 1352, "loss": 0.4565, "learning_rate": 9.891059846764679e-05, "epoch": 0.5317577548005908, "percentage": 6.66, "elapsed_time": "0:25:27", "remaining_time": "5:56:54"}
|
10 |
+
{"current_steps": 100, "total_steps": 1352, "loss": 0.4674, "learning_rate": 9.865621008030492e-05, "epoch": 0.5908419497784343, "percentage": 7.4, "elapsed_time": "0:28:13", "remaining_time": "5:53:22"}
|
11 |
+
{"current_steps": 110, "total_steps": 1352, "loss": 0.4727, "learning_rate": 9.83755513889369e-05, "epoch": 0.6499261447562777, "percentage": 8.14, "elapsed_time": "0:31:02", "remaining_time": "5:50:31"}
|
12 |
+
{"current_steps": 120, "total_steps": 1352, "loss": 0.4736, "learning_rate": 9.80687739258782e-05, "epoch": 0.7090103397341211, "percentage": 8.88, "elapsed_time": "0:33:49", "remaining_time": "5:47:18"}
|
13 |
+
{"current_steps": 130, "total_steps": 1352, "loss": 0.47, "learning_rate": 9.773604332542729e-05, "epoch": 0.7680945347119645, "percentage": 9.62, "elapsed_time": "0:36:36", "remaining_time": "5:44:02"}
|
14 |
+
{"current_steps": 140, "total_steps": 1352, "loss": 0.467, "learning_rate": 9.737753923441688e-05, "epoch": 0.827178729689808, "percentage": 10.36, "elapsed_time": "0:39:26", "remaining_time": "5:41:26"}
|
15 |
+
{"current_steps": 150, "total_steps": 1352, "loss": 0.4522, "learning_rate": 9.69934552152196e-05, "epoch": 0.8862629246676514, "percentage": 11.09, "elapsed_time": "0:42:15", "remaining_time": "5:38:37"}
|
16 |
+
{"current_steps": 160, "total_steps": 1352, "loss": 0.4613, "learning_rate": 9.658399864124037e-05, "epoch": 0.9453471196454948, "percentage": 11.83, "elapsed_time": "0:45:01", "remaining_time": "5:35:24"}
|
17 |
+
{"current_steps": 170, "total_steps": 1352, "loss": 0.4641, "learning_rate": 9.61493905849521e-05, "epoch": 1.0044313146233383, "percentage": 12.57, "elapsed_time": "0:47:48", "remaining_time": "5:32:25"}
|
18 |
+
{"current_steps": 180, "total_steps": 1352, "loss": 0.3946, "learning_rate": 9.568986569853487e-05, "epoch": 1.0635155096011817, "percentage": 13.31, "elapsed_time": "0:50:42", "remaining_time": "5:30:07"}
|
19 |
+
{"current_steps": 190, "total_steps": 1352, "loss": 0.3882, "learning_rate": 9.520567208718337e-05, "epoch": 1.122599704579025, "percentage": 14.05, "elapsed_time": "0:53:31", "remaining_time": "5:27:20"}
|
20 |
+
{"current_steps": 200, "total_steps": 1352, "loss": 0.4205, "learning_rate": 9.469707117515067e-05, "epoch": 1.1816838995568686, "percentage": 14.79, "elapsed_time": "0:56:16", "remaining_time": "5:24:07"}
|
21 |
+
{"current_steps": 210, "total_steps": 1352, "loss": 0.386, "learning_rate": 9.416433756460091e-05, "epoch": 1.240768094534712, "percentage": 15.53, "elapsed_time": "0:59:03", "remaining_time": "5:21:09"}
|
22 |
+
{"current_steps": 220, "total_steps": 1352, "loss": 0.4096, "learning_rate": 9.360775888734698e-05, "epoch": 1.2998522895125553, "percentage": 16.27, "elapsed_time": "1:01:50", "remaining_time": "5:18:10"}
|
23 |
+
{"current_steps": 230, "total_steps": 1352, "loss": 0.3921, "learning_rate": 9.302763564955331e-05, "epoch": 1.3589364844903988, "percentage": 17.01, "elapsed_time": "1:04:39", "remaining_time": "5:15:23"}
|
24 |
+
{"current_steps": 240, "total_steps": 1352, "loss": 0.3788, "learning_rate": 9.242428106948749e-05, "epoch": 1.4180206794682422, "percentage": 17.75, "elapsed_time": "1:07:30", "remaining_time": "5:12:45"}
|
25 |
+
{"current_steps": 250, "total_steps": 1352, "loss": 0.3894, "learning_rate": 9.179802090840853e-05, "epoch": 1.4771048744460857, "percentage": 18.49, "elapsed_time": "1:10:19", "remaining_time": "5:09:59"}
|
26 |
+
{"current_steps": 260, "total_steps": 1352, "loss": 0.3707, "learning_rate": 9.114919329468282e-05, "epoch": 1.536189069423929, "percentage": 19.23, "elapsed_time": "1:13:12", "remaining_time": "5:07:27"}
|
27 |
+
{"current_steps": 270, "total_steps": 1352, "loss": 0.3938, "learning_rate": 9.04781485412231e-05, "epoch": 1.5952732644017726, "percentage": 19.97, "elapsed_time": "1:15:55", "remaining_time": "5:04:16"}
|
28 |
+
{"current_steps": 280, "total_steps": 1352, "loss": 0.3799, "learning_rate": 8.978524895634842e-05, "epoch": 1.654357459379616, "percentage": 20.71, "elapsed_time": "1:18:46", "remaining_time": "5:01:35"}
|
29 |
+
{"current_steps": 290, "total_steps": 1352, "loss": 0.403, "learning_rate": 8.907086864816803e-05, "epoch": 1.7134416543574593, "percentage": 21.45, "elapsed_time": "1:21:33", "remaining_time": "4:58:40"}
|
30 |
+
{"current_steps": 300, "total_steps": 1352, "loss": 0.3758, "learning_rate": 8.833539332259398e-05, "epoch": 1.7725258493353029, "percentage": 22.19, "elapsed_time": "1:24:28", "remaining_time": "4:56:12"}
|
31 |
+
{"current_steps": 310, "total_steps": 1352, "loss": 0.3963, "learning_rate": 8.757922007509207e-05, "epoch": 1.8316100443131462, "percentage": 22.93, "elapsed_time": "1:27:16", "remaining_time": "4:53:23"}
|
32 |
+
{"current_steps": 320, "total_steps": 1352, "loss": 0.3858, "learning_rate": 8.680275717628337e-05, "epoch": 1.8906942392909896, "percentage": 23.67, "elapsed_time": "1:30:06", "remaining_time": "4:50:35"}
|
33 |
+
{"current_steps": 330, "total_steps": 1352, "loss": 0.3799, "learning_rate": 8.600642385151205e-05, "epoch": 1.9497784342688331, "percentage": 24.41, "elapsed_time": "1:32:52", "remaining_time": "4:47:37"}
|
34 |
+
{"current_steps": 340, "total_steps": 1352, "loss": 0.3763, "learning_rate": 8.519065005449858e-05, "epoch": 2.0088626292466767, "percentage": 25.15, "elapsed_time": "1:35:37", "remaining_time": "4:44:37"}
|
35 |
+
{"current_steps": 350, "total_steps": 1352, "loss": 0.2934, "learning_rate": 8.43558762352005e-05, "epoch": 2.06794682422452, "percentage": 25.89, "elapsed_time": "1:38:32", "remaining_time": "4:42:05"}
|
36 |
+
{"current_steps": 360, "total_steps": 1352, "loss": 0.3078, "learning_rate": 8.350255310200612e-05, "epoch": 2.1270310192023634, "percentage": 26.63, "elapsed_time": "1:41:15", "remaining_time": "4:39:01"}
|
37 |
+
{"current_steps": 370, "total_steps": 1352, "loss": 0.3028, "learning_rate": 8.263114137838947e-05, "epoch": 2.186115214180207, "percentage": 27.37, "elapsed_time": "1:44:01", "remaining_time": "4:36:06"}
|
38 |
+
{"current_steps": 380, "total_steps": 1352, "loss": 0.2972, "learning_rate": 8.174211155415799e-05, "epoch": 2.24519940915805, "percentage": 28.11, "elapsed_time": "1:46:47", "remaining_time": "4:33:09"}
|
39 |
+
{"current_steps": 390, "total_steps": 1352, "loss": 0.2995, "learning_rate": 8.083594363142717e-05, "epoch": 2.3042836041358936, "percentage": 28.85, "elapsed_time": "1:49:35", "remaining_time": "4:30:18"}
|
40 |
+
{"current_steps": 400, "total_steps": 1352, "loss": 0.2963, "learning_rate": 7.991312686545937e-05, "epoch": 2.363367799113737, "percentage": 29.59, "elapsed_time": "1:52:24", "remaining_time": "4:27:32"}
|
41 |
+
{"current_steps": 410, "total_steps": 1352, "loss": 0.2987, "learning_rate": 7.897415950050676e-05, "epoch": 2.4224519940915803, "percentage": 30.33, "elapsed_time": "1:55:12", "remaining_time": "4:24:40"}
|
42 |
+
{"current_steps": 420, "total_steps": 1352, "loss": 0.3092, "learning_rate": 7.801954850080075e-05, "epoch": 2.481536189069424, "percentage": 31.07, "elapsed_time": "1:57:55", "remaining_time": "4:21:41"}
|
43 |
+
{"current_steps": 430, "total_steps": 1352, "loss": 0.2951, "learning_rate": 7.704980927683359e-05, "epoch": 2.5406203840472674, "percentage": 31.8, "elapsed_time": "2:00:50", "remaining_time": "4:19:05"}
|
44 |
+
{"current_steps": 440, "total_steps": 1352, "loss": 0.3097, "learning_rate": 7.60654654070796e-05, "epoch": 2.5997045790251105, "percentage": 32.54, "elapsed_time": "2:03:35", "remaining_time": "4:16:10"}
|
45 |
+
{"current_steps": 450, "total_steps": 1352, "loss": 0.2999, "learning_rate": 7.506704835530634e-05, "epoch": 2.658788774002954, "percentage": 33.28, "elapsed_time": "2:06:27", "remaining_time": "4:13:28"}
|
46 |
+
{"current_steps": 460, "total_steps": 1352, "loss": 0.2905, "learning_rate": 7.405509718362842e-05, "epoch": 2.7178729689807977, "percentage": 34.02, "elapsed_time": "2:09:15", "remaining_time": "4:10:37"}
|
47 |
+
{"current_steps": 470, "total_steps": 1352, "loss": 0.309, "learning_rate": 7.303015826145885e-05, "epoch": 2.7769571639586412, "percentage": 34.76, "elapsed_time": "2:12:01", "remaining_time": "4:07:45"}
|
48 |
+
{"current_steps": 480, "total_steps": 1352, "loss": 0.302, "learning_rate": 7.199278497051498e-05, "epoch": 2.8360413589364843, "percentage": 35.5, "elapsed_time": "2:14:51", "remaining_time": "4:05:00"}
|
49 |
+
{"current_steps": 490, "total_steps": 1352, "loss": 0.297, "learning_rate": 7.094353740603839e-05, "epoch": 2.895125553914328, "percentage": 36.24, "elapsed_time": "2:17:38", "remaining_time": "4:02:07"}
|
50 |
+
{"current_steps": 500, "total_steps": 1352, "loss": 0.3101, "learning_rate": 6.988298207439021e-05, "epoch": 2.9542097488921715, "percentage": 36.98, "elapsed_time": "2:20:26", "remaining_time": "3:59:18"}
|
51 |
+
{"current_steps": 500, "total_steps": 1352, "eval_loss": 0.4939613938331604, "epoch": 2.9542097488921715, "percentage": 36.98, "elapsed_time": "2:21:20", "remaining_time": "4:00:49"}
|
52 |
+
{"current_steps": 510, "total_steps": 1352, "loss": 0.2736, "learning_rate": 6.881169158718474e-05, "epoch": 3.0132939438700146, "percentage": 37.72, "elapsed_time": "2:24:11", "remaining_time": "3:58:03"}
|
53 |
+
{"current_steps": 520, "total_steps": 1352, "loss": 0.2187, "learning_rate": 6.773024435212678e-05, "epoch": 3.072378138847858, "percentage": 38.46, "elapsed_time": "2:26:58", "remaining_time": "3:55:10"}
|
54 |
+
{"current_steps": 530, "total_steps": 1352, "loss": 0.2057, "learning_rate": 6.663922426071977e-05, "epoch": 3.1314623338257017, "percentage": 39.2, "elapsed_time": "2:29:45", "remaining_time": "3:52:15"}
|
55 |
+
{"current_steps": 540, "total_steps": 1352, "loss": 0.2067, "learning_rate": 6.553922037301283e-05, "epoch": 3.1905465288035453, "percentage": 39.94, "elapsed_time": "2:32:39", "remaining_time": "3:49:32"}
|
56 |
+
{"current_steps": 550, "total_steps": 1352, "loss": 0.1989, "learning_rate": 6.443082659955738e-05, "epoch": 3.2496307237813884, "percentage": 40.68, "elapsed_time": "2:35:33", "remaining_time": "3:46:49"}
|
57 |
+
{"current_steps": 560, "total_steps": 1352, "loss": 0.2179, "learning_rate": 6.331464138074493e-05, "epoch": 3.308714918759232, "percentage": 41.42, "elapsed_time": "2:38:17", "remaining_time": "3:43:52"}
|
58 |
+
{"current_steps": 570, "total_steps": 1352, "loss": 0.2176, "learning_rate": 6.219126736369903e-05, "epoch": 3.3677991137370755, "percentage": 42.16, "elapsed_time": "2:41:06", "remaining_time": "3:41:01"}
|
59 |
+
{"current_steps": 580, "total_steps": 1352, "loss": 0.2215, "learning_rate": 6.106131107689599e-05, "epoch": 3.4268833087149186, "percentage": 42.9, "elapsed_time": "2:43:52", "remaining_time": "3:38:06"}
|
60 |
+
{"current_steps": 590, "total_steps": 1352, "loss": 0.2153, "learning_rate": 5.9925382602689974e-05, "epoch": 3.485967503692762, "percentage": 43.64, "elapsed_time": "2:46:38", "remaining_time": "3:35:13"}
|
61 |
+
{"current_steps": 600, "total_steps": 1352, "loss": 0.2133, "learning_rate": 5.8784095247919305e-05, "epoch": 3.5450516986706058, "percentage": 44.38, "elapsed_time": "2:49:26", "remaining_time": "3:32:21"}
|
62 |
+
{"current_steps": 610, "total_steps": 1352, "loss": 0.2109, "learning_rate": 5.763806521277184e-05, "epoch": 3.604135893648449, "percentage": 45.12, "elapsed_time": "2:52:16", "remaining_time": "3:29:32"}
|
63 |
+
{"current_steps": 620, "total_steps": 1352, "loss": 0.2214, "learning_rate": 5.648791125808809e-05, "epoch": 3.6632200886262924, "percentage": 45.86, "elapsed_time": "2:55:02", "remaining_time": "3:26:39"}
|
64 |
+
{"current_steps": 630, "total_steps": 1352, "loss": 0.212, "learning_rate": 5.5334254371281934e-05, "epoch": 3.722304283604136, "percentage": 46.6, "elapsed_time": "2:57:52", "remaining_time": "3:23:51"}
|
65 |
+
{"current_steps": 640, "total_steps": 1352, "loss": 0.2196, "learning_rate": 5.417771743105907e-05, "epoch": 3.781388478581979, "percentage": 47.34, "elapsed_time": "3:00:45", "remaining_time": "3:21:05"}
|
66 |
+
{"current_steps": 650, "total_steps": 1352, "loss": 0.2145, "learning_rate": 5.3018924871114305e-05, "epoch": 3.8404726735598227, "percentage": 48.08, "elapsed_time": "3:03:33", "remaining_time": "3:18:14"}
|
67 |
+
{"current_steps": 660, "total_steps": 1352, "loss": 0.2199, "learning_rate": 5.185850234298942e-05, "epoch": 3.8995568685376663, "percentage": 48.82, "elapsed_time": "3:06:17", "remaining_time": "3:15:19"}
|
68 |
+
{"current_steps": 670, "total_steps": 1352, "loss": 0.218, "learning_rate": 5.0697076378273354e-05, "epoch": 3.9586410635155094, "percentage": 49.56, "elapsed_time": "3:09:04", "remaining_time": "3:12:27"}
|
69 |
+
{"current_steps": 680, "total_steps": 1352, "loss": 0.1987, "learning_rate": 4.953527405032723e-05, "epoch": 4.017725258493353, "percentage": 50.3, "elapsed_time": "3:11:51", "remaining_time": "3:09:35"}
|
70 |
+
{"current_steps": 690, "total_steps": 1352, "loss": 0.1425, "learning_rate": 4.8373722635717086e-05, "epoch": 4.0768094534711965, "percentage": 51.04, "elapsed_time": "3:14:39", "remaining_time": "3:06:45"}
|
71 |
+
{"current_steps": 700, "total_steps": 1352, "loss": 0.1313, "learning_rate": 4.721304927553658e-05, "epoch": 4.13589364844904, "percentage": 51.78, "elapsed_time": "3:17:26", "remaining_time": "3:03:53"}
|
72 |
+
{"current_steps": 710, "total_steps": 1352, "loss": 0.1397, "learning_rate": 4.60538806368031e-05, "epoch": 4.194977843426884, "percentage": 52.51, "elapsed_time": "3:20:11", "remaining_time": "3:01:01"}
|
73 |
+
{"current_steps": 720, "total_steps": 1352, "loss": 0.1421, "learning_rate": 4.489684257410958e-05, "epoch": 4.254062038404727, "percentage": 53.25, "elapsed_time": "3:22:58", "remaining_time": "2:58:09"}
|
74 |
+
{"current_steps": 730, "total_steps": 1352, "loss": 0.1386, "learning_rate": 4.374255979171538e-05, "epoch": 4.31314623338257, "percentage": 53.99, "elapsed_time": "3:25:45", "remaining_time": "2:55:19"}
|
75 |
+
{"current_steps": 740, "total_steps": 1352, "loss": 0.1444, "learning_rate": 4.2591655506257645e-05, "epoch": 4.372230428360414, "percentage": 54.73, "elapsed_time": "3:28:35", "remaining_time": "2:52:30"}
|
76 |
+
{"current_steps": 750, "total_steps": 1352, "loss": 0.1391, "learning_rate": 4.144475111026643e-05, "epoch": 4.431314623338257, "percentage": 55.47, "elapsed_time": "3:31:25", "remaining_time": "2:49:42"}
|
77 |
+
{"current_steps": 760, "total_steps": 1352, "loss": 0.1438, "learning_rate": 4.030246583666437e-05, "epoch": 4.4903988183161, "percentage": 56.21, "elapsed_time": "3:34:15", "remaining_time": "2:46:53"}
|
78 |
+
{"current_steps": 770, "total_steps": 1352, "loss": 0.1415, "learning_rate": 3.9165416424432414e-05, "epoch": 4.549483013293944, "percentage": 56.95, "elapsed_time": "3:37:04", "remaining_time": "2:44:04"}
|
79 |
+
{"current_steps": 780, "total_steps": 1352, "loss": 0.1492, "learning_rate": 3.803421678562213e-05, "epoch": 4.608567208271787, "percentage": 57.69, "elapsed_time": "3:39:52", "remaining_time": "2:41:14"}
|
80 |
+
{"current_steps": 790, "total_steps": 1352, "loss": 0.1512, "learning_rate": 3.690947767389426e-05, "epoch": 4.66765140324963, "percentage": 58.43, "elapsed_time": "3:42:44", "remaining_time": "2:38:27"}
|
81 |
+
{"current_steps": 800, "total_steps": 1352, "loss": 0.1481, "learning_rate": 3.57918063547627e-05, "epoch": 4.726735598227474, "percentage": 59.17, "elapsed_time": "3:45:31", "remaining_time": "2:35:36"}
|
82 |
+
{"current_steps": 810, "total_steps": 1352, "loss": 0.1418, "learning_rate": 3.468180627772144e-05, "epoch": 4.7858197932053175, "percentage": 59.91, "elapsed_time": "3:48:15", "remaining_time": "2:32:44"}
|
83 |
+
{"current_steps": 820, "total_steps": 1352, "loss": 0.146, "learning_rate": 3.358007675043224e-05, "epoch": 4.844903988183161, "percentage": 60.65, "elapsed_time": "3:51:03", "remaining_time": "2:29:54"}
|
84 |
+
{"current_steps": 830, "total_steps": 1352, "loss": 0.1407, "learning_rate": 3.2487212615148316e-05, "epoch": 4.903988183161005, "percentage": 61.39, "elapsed_time": "3:53:49", "remaining_time": "2:27:03"}
|
85 |
+
{"current_steps": 840, "total_steps": 1352, "loss": 0.1502, "learning_rate": 3.1403803927549006e-05, "epoch": 4.963072378138848, "percentage": 62.13, "elapsed_time": "3:56:38", "remaining_time": "2:24:14"}
|
86 |
+
{"current_steps": 850, "total_steps": 1352, "loss": 0.1322, "learning_rate": 3.0330435638158806e-05, "epoch": 5.022156573116692, "percentage": 62.87, "elapsed_time": "3:59:24", "remaining_time": "2:21:23"}
|
87 |
+
{"current_steps": 860, "total_steps": 1352, "loss": 0.0985, "learning_rate": 2.9267687276522876e-05, "epoch": 5.081240768094535, "percentage": 63.61, "elapsed_time": "4:02:13", "remaining_time": "2:18:34"}
|
88 |
+
{"current_steps": 870, "total_steps": 1352, "loss": 0.0929, "learning_rate": 2.821613263830912e-05, "epoch": 5.140324963072378, "percentage": 64.35, "elapsed_time": "4:05:03", "remaining_time": "2:15:46"}
|
89 |
+
{"current_steps": 880, "total_steps": 1352, "loss": 0.0941, "learning_rate": 2.717633947550651e-05, "epoch": 5.199409158050222, "percentage": 65.09, "elapsed_time": "4:07:51", "remaining_time": "2:12:56"}
|
90 |
+
{"current_steps": 890, "total_steps": 1352, "loss": 0.0951, "learning_rate": 2.614886918988604e-05, "epoch": 5.258493353028065, "percentage": 65.83, "elapsed_time": "4:10:38", "remaining_time": "2:10:06"}
|
91 |
+
{"current_steps": 900, "total_steps": 1352, "loss": 0.0926, "learning_rate": 2.5134276529890644e-05, "epoch": 5.317577548005908, "percentage": 66.57, "elapsed_time": "4:13:26", "remaining_time": "2:07:17"}
|
92 |
+
{"current_steps": 910, "total_steps": 1352, "loss": 0.095, "learning_rate": 2.4133109291117156e-05, "epoch": 5.376661742983752, "percentage": 67.31, "elapsed_time": "4:16:14", "remaining_time": "2:04:27"}
|
93 |
+
{"current_steps": 920, "total_steps": 1352, "loss": 0.0886, "learning_rate": 2.314590802055232e-05, "epoch": 5.435745937961595, "percentage": 68.05, "elapsed_time": "4:18:58", "remaining_time": "2:01:36"}
|
94 |
+
{"current_steps": 930, "total_steps": 1352, "loss": 0.096, "learning_rate": 2.2173205724722318e-05, "epoch": 5.4948301329394384, "percentage": 68.79, "elapsed_time": "4:21:47", "remaining_time": "1:58:47"}
|
95 |
+
{"current_steps": 940, "total_steps": 1352, "loss": 0.0962, "learning_rate": 2.121552758191366e-05, "epoch": 5.5539143279172825, "percentage": 69.53, "elapsed_time": "4:24:31", "remaining_time": "1:55:56"}
|
96 |
+
{"current_steps": 950, "total_steps": 1352, "loss": 0.0985, "learning_rate": 2.027339065862064e-05, "epoch": 5.612998522895126, "percentage": 70.27, "elapsed_time": "4:27:16", "remaining_time": "1:53:05"}
|
97 |
+
{"current_steps": 960, "total_steps": 1352, "loss": 0.0939, "learning_rate": 1.934730363037237e-05, "epoch": 5.672082717872969, "percentage": 71.01, "elapsed_time": "4:30:02", "remaining_time": "1:50:16"}
|
98 |
+
{"current_steps": 970, "total_steps": 1352, "loss": 0.0975, "learning_rate": 1.843776650709046e-05, "epoch": 5.731166912850813, "percentage": 71.75, "elapsed_time": "4:32:47", "remaining_time": "1:47:25"}
|
99 |
+
{"current_steps": 980, "total_steps": 1352, "loss": 0.093, "learning_rate": 1.7545270363125153e-05, "epoch": 5.790251107828656, "percentage": 72.49, "elapsed_time": "4:35:33", "remaining_time": "1:44:35"}
|
100 |
+
{"current_steps": 990, "total_steps": 1352, "loss": 0.0959, "learning_rate": 1.6670297072116165e-05, "epoch": 5.849335302806499, "percentage": 73.22, "elapsed_time": "4:38:25", "remaining_time": "1:41:48"}
|
101 |
+
{"current_steps": 1000, "total_steps": 1352, "loss": 0.0918, "learning_rate": 1.581331904682089e-05, "epoch": 5.908419497784343, "percentage": 73.96, "elapsed_time": "4:41:09", "remaining_time": "1:38:58"}
|
102 |
+
{"current_steps": 1000, "total_steps": 1352, "eval_loss": 0.7311862707138062, "epoch": 5.908419497784343, "percentage": 73.96, "elapsed_time": "4:42:02", "remaining_time": "1:39:16"}
|
103 |
+
{"current_steps": 1010, "total_steps": 1352, "loss": 0.0933, "learning_rate": 1.4974798984050942e-05, "epoch": 5.967503692762186, "percentage": 74.7, "elapsed_time": "4:45:04", "remaining_time": "1:36:31"}
|
104 |
+
{"current_steps": 1020, "total_steps": 1352, "loss": 0.0828, "learning_rate": 1.4155189614854275e-05, "epoch": 6.026587887740029, "percentage": 75.44, "elapsed_time": "4:47:52", "remaining_time": "1:33:41"}
|
105 |
+
{"current_steps": 1030, "total_steps": 1352, "loss": 0.0678, "learning_rate": 1.3354933460078217e-05, "epoch": 6.085672082717873, "percentage": 76.18, "elapsed_time": "4:50:41", "remaining_time": "1:30:52"}
|
106 |
+
{"current_steps": 1040, "total_steps": 1352, "loss": 0.0629, "learning_rate": 1.257446259144494e-05, "epoch": 6.144756277695716, "percentage": 76.92, "elapsed_time": "4:53:27", "remaining_time": "1:28:02"}
|
107 |
+
{"current_steps": 1050, "total_steps": 1352, "loss": 0.0697, "learning_rate": 1.1814198398268794e-05, "epoch": 6.203840472673559, "percentage": 77.66, "elapsed_time": "4:56:13", "remaining_time": "1:25:12"}
|
108 |
+
{"current_steps": 1060, "total_steps": 1352, "loss": 0.0644, "learning_rate": 1.1074551359941021e-05, "epoch": 6.262924667651403, "percentage": 78.4, "elapsed_time": "4:59:01", "remaining_time": "1:22:22"}
|
109 |
+
{"current_steps": 1070, "total_steps": 1352, "loss": 0.069, "learning_rate": 1.0355920824305127e-05, "epoch": 6.3220088626292466, "percentage": 79.14, "elapsed_time": "5:01:54", "remaining_time": "1:19:34"}
|
110 |
+
{"current_steps": 1080, "total_steps": 1352, "loss": 0.0666, "learning_rate": 9.658694792042284e-06, "epoch": 6.381093057607091, "percentage": 79.88, "elapsed_time": "5:04:41", "remaining_time": "1:16:44"}
|
111 |
+
{"current_steps": 1090, "total_steps": 1352, "loss": 0.0679, "learning_rate": 8.98324970718319e-06, "epoch": 6.440177252584934, "percentage": 80.62, "elapsed_time": "5:07:30", "remaining_time": "1:13:54"}
|
112 |
+
{"current_steps": 1100, "total_steps": 1352, "loss": 0.0656, "learning_rate": 8.329950253859703e-06, "epoch": 6.499261447562777, "percentage": 81.36, "elapsed_time": "5:10:14", "remaining_time": "1:11:04"}
|
113 |
+
{"current_steps": 1110, "total_steps": 1352, "loss": 0.0664, "learning_rate": 7.699149159405734e-06, "epoch": 6.558345642540621, "percentage": 82.1, "elapsed_time": "5:13:04", "remaining_time": "1:08:15"}
|
114 |
+
{"current_steps": 1120, "total_steps": 1352, "loss": 0.0673, "learning_rate": 7.0911870039138015e-06, "epoch": 6.617429837518464, "percentage": 82.84, "elapsed_time": "5:15:53", "remaining_time": "1:05:26"}
|
115 |
+
{"current_steps": 1130, "total_steps": 1352, "loss": 0.0697, "learning_rate": 6.506392036350167e-06, "epoch": 6.676514032496307, "percentage": 83.58, "elapsed_time": "5:18:38", "remaining_time": "1:02:36"}
|
116 |
+
{"current_steps": 1140, "total_steps": 1352, "loss": 0.0669, "learning_rate": 5.945079997327713e-06, "epoch": 6.735598227474151, "percentage": 84.32, "elapsed_time": "5:21:24", "remaining_time": "0:59:46"}
|
117 |
+
{"current_steps": 1150, "total_steps": 1352, "loss": 0.0683, "learning_rate": 5.407553948632277e-06, "epoch": 6.794682422451994, "percentage": 85.06, "elapsed_time": "5:24:09", "remaining_time": "0:56:56"}
|
118 |
+
{"current_steps": 1160, "total_steps": 1352, "loss": 0.0684, "learning_rate": 4.894104109594466e-06, "epoch": 6.853766617429837, "percentage": 85.8, "elapsed_time": "5:26:58", "remaining_time": "0:54:07"}
|
119 |
+
{"current_steps": 1170, "total_steps": 1352, "loss": 0.0687, "learning_rate": 4.405007700395497e-06, "epoch": 6.912850812407681, "percentage": 86.54, "elapsed_time": "5:29:44", "remaining_time": "0:51:17"}
|
120 |
+
{"current_steps": 1180, "total_steps": 1352, "loss": 0.0721, "learning_rate": 3.940528792391223e-06, "epoch": 6.971935007385524, "percentage": 87.28, "elapsed_time": "5:32:25", "remaining_time": "0:48:27"}
|
121 |
+
{"current_steps": 1190, "total_steps": 1352, "loss": 0.0653, "learning_rate": 3.5009181655356826e-06, "epoch": 7.0310192023633675, "percentage": 88.02, "elapsed_time": "5:35:13", "remaining_time": "0:45:38"}
|
122 |
+
{"current_steps": 1200, "total_steps": 1352, "loss": 0.0579, "learning_rate": 3.0864131729807398e-06, "epoch": 7.0901033973412115, "percentage": 88.76, "elapsed_time": "5:38:03", "remaining_time": "0:42:49"}
|
123 |
+
{"current_steps": 1210, "total_steps": 1352, "loss": 0.0585, "learning_rate": 2.6972376129251686e-06, "epoch": 7.149187592319055, "percentage": 89.5, "elapsed_time": "5:40:48", "remaining_time": "0:39:59"}
|
124 |
+
{"current_steps": 1220, "total_steps": 1352, "loss": 0.0562, "learning_rate": 2.3336016077822154e-06, "epoch": 7.208271787296898, "percentage": 90.24, "elapsed_time": "5:43:37", "remaining_time": "0:37:10"}
|
125 |
+
{"current_steps": 1230, "total_steps": 1352, "loss": 0.0572, "learning_rate": 1.9957014907310224e-06, "epoch": 7.267355982274742, "percentage": 90.98, "elapsed_time": "5:46:23", "remaining_time": "0:34:21"}
|
126 |
+
{"current_steps": 1240, "total_steps": 1352, "loss": 0.06, "learning_rate": 1.6837196997130434e-06, "epoch": 7.326440177252585, "percentage": 91.72, "elapsed_time": "5:49:09", "remaining_time": "0:31:32"}
|
127 |
+
{"current_steps": 1250, "total_steps": 1352, "loss": 0.0565, "learning_rate": 1.3978246789307149e-06, "epoch": 7.385524372230428, "percentage": 92.46, "elapsed_time": "5:51:56", "remaining_time": "0:28:43"}
|
128 |
+
{"current_steps": 1260, "total_steps": 1352, "loss": 0.0562, "learning_rate": 1.1381707879016157e-06, "epoch": 7.444608567208272, "percentage": 93.2, "elapsed_time": "5:54:44", "remaining_time": "0:25:54"}
|
129 |
+
{"current_steps": 1270, "total_steps": 1352, "loss": 0.0556, "learning_rate": 9.048982181171894e-07, "epoch": 7.503692762186115, "percentage": 93.93, "elapsed_time": "5:57:33", "remaining_time": "0:23:05"}
|
130 |
+
{"current_steps": 1280, "total_steps": 1352, "loss": 0.0525, "learning_rate": 6.98132917350991e-07, "epoch": 7.562776957163958, "percentage": 94.67, "elapsed_time": "6:00:22", "remaining_time": "0:20:16"}
|
131 |
+
{"current_steps": 1290, "total_steps": 1352, "loss": 0.0549, "learning_rate": 5.179865216573654e-07, "epoch": 7.621861152141802, "percentage": 95.41, "elapsed_time": "6:03:03", "remaining_time": "0:17:26"}
|
132 |
+
{"current_steps": 1300, "total_steps": 1352, "loss": 0.0583, "learning_rate": 3.6455629509730136e-07, "epoch": 7.680945347119645, "percentage": 96.15, "elapsed_time": "6:05:55", "remaining_time": "0:14:38"}
|
133 |
+
{"current_steps": 1310, "total_steps": 1352, "loss": 0.0553, "learning_rate": 2.3792507722388835e-07, "epoch": 7.7400295420974885, "percentage": 96.89, "elapsed_time": "6:08:39", "remaining_time": "0:11:49"}
|
134 |
+
{"current_steps": 1320, "total_steps": 1352, "loss": 0.0556, "learning_rate": 1.3816123835588834e-07, "epoch": 7.7991137370753325, "percentage": 97.63, "elapsed_time": "6:11:26", "remaining_time": "0:09:00"}
|
135 |
+
{"current_steps": 1330, "total_steps": 1352, "loss": 0.0589, "learning_rate": 6.531864266343113e-08, "epoch": 7.858197932053176, "percentage": 98.37, "elapsed_time": "6:14:11", "remaining_time": "0:06:11"}
|
136 |
+
{"current_steps": 1340, "total_steps": 1352, "loss": 0.0603, "learning_rate": 1.943661908586636e-08, "epoch": 7.917282127031019, "percentage": 99.11, "elapsed_time": "6:17:00", "remaining_time": "0:03:22"}
|
137 |
+
{"current_steps": 1350, "total_steps": 1352, "loss": 0.0568, "learning_rate": 5.399400973882251e-10, "epoch": 7.976366322008863, "percentage": 99.85, "elapsed_time": "6:19:47", "remaining_time": "0:00:33"}
|
138 |
+
{"current_steps": 1352, "total_steps": 1352, "epoch": 7.988183161004431, "percentage": 100.0, "elapsed_time": "6:20:18", "remaining_time": "0:00:00"}
|
trainer_state.json
ADDED
@@ -0,0 +1,1003 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 7.988183161004431,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 1352,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.059084194977843424,
|
13 |
+
"grad_norm": 0.6387189059092414,
|
14 |
+
"learning_rate": 9.998650208062712e-05,
|
15 |
+
"loss": 0.6972,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.11816838995568685,
|
20 |
+
"grad_norm": 0.48601036335500336,
|
21 |
+
"learning_rate": 9.994601561026155e-05,
|
22 |
+
"loss": 0.5423,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.17725258493353027,
|
27 |
+
"grad_norm": 0.40437591619558344,
|
28 |
+
"learning_rate": 9.98785624482278e-05,
|
29 |
+
"loss": 0.5149,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.2363367799113737,
|
34 |
+
"grad_norm": 0.5030211090458666,
|
35 |
+
"learning_rate": 9.978417901361958e-05,
|
36 |
+
"loss": 0.513,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.29542097488921715,
|
41 |
+
"grad_norm": 0.49098083558596206,
|
42 |
+
"learning_rate": 9.96629162656365e-05,
|
43 |
+
"loss": 0.4957,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.35450516986706054,
|
48 |
+
"grad_norm": 0.6329012343929873,
|
49 |
+
"learning_rate": 9.951483967607041e-05,
|
50 |
+
"loss": 0.495,
|
51 |
+
"step": 60
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.413589364844904,
|
55 |
+
"grad_norm": 0.48252149699962754,
|
56 |
+
"learning_rate": 9.934002919395592e-05,
|
57 |
+
"loss": 0.4943,
|
58 |
+
"step": 70
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.4726735598227474,
|
62 |
+
"grad_norm": 0.5221971068930835,
|
63 |
+
"learning_rate": 9.91385792024048e-05,
|
64 |
+
"loss": 0.4738,
|
65 |
+
"step": 80
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.5317577548005908,
|
69 |
+
"grad_norm": 0.42549092560536134,
|
70 |
+
"learning_rate": 9.891059846764679e-05,
|
71 |
+
"loss": 0.4565,
|
72 |
+
"step": 90
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.5908419497784343,
|
76 |
+
"grad_norm": 0.4606171719652433,
|
77 |
+
"learning_rate": 9.865621008030492e-05,
|
78 |
+
"loss": 0.4674,
|
79 |
+
"step": 100
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.6499261447562777,
|
83 |
+
"grad_norm": 0.46353540699946943,
|
84 |
+
"learning_rate": 9.83755513889369e-05,
|
85 |
+
"loss": 0.4727,
|
86 |
+
"step": 110
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.7090103397341211,
|
90 |
+
"grad_norm": 0.4815928480268326,
|
91 |
+
"learning_rate": 9.80687739258782e-05,
|
92 |
+
"loss": 0.4736,
|
93 |
+
"step": 120
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.7680945347119645,
|
97 |
+
"grad_norm": 0.485838392040906,
|
98 |
+
"learning_rate": 9.773604332542729e-05,
|
99 |
+
"loss": 0.47,
|
100 |
+
"step": 130
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.827178729689808,
|
104 |
+
"grad_norm": 0.5025850953484241,
|
105 |
+
"learning_rate": 9.737753923441688e-05,
|
106 |
+
"loss": 0.467,
|
107 |
+
"step": 140
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.8862629246676514,
|
111 |
+
"grad_norm": 0.45997226542102815,
|
112 |
+
"learning_rate": 9.69934552152196e-05,
|
113 |
+
"loss": 0.4522,
|
114 |
+
"step": 150
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.9453471196454948,
|
118 |
+
"grad_norm": 0.4546309634161405,
|
119 |
+
"learning_rate": 9.658399864124037e-05,
|
120 |
+
"loss": 0.4613,
|
121 |
+
"step": 160
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0044313146233383,
|
125 |
+
"grad_norm": 0.6577670848472944,
|
126 |
+
"learning_rate": 9.61493905849521e-05,
|
127 |
+
"loss": 0.4641,
|
128 |
+
"step": 170
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 1.0635155096011817,
|
132 |
+
"grad_norm": 0.5743711541659764,
|
133 |
+
"learning_rate": 9.568986569853487e-05,
|
134 |
+
"loss": 0.3946,
|
135 |
+
"step": 180
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 1.122599704579025,
|
139 |
+
"grad_norm": 0.5374571463070855,
|
140 |
+
"learning_rate": 9.520567208718337e-05,
|
141 |
+
"loss": 0.3882,
|
142 |
+
"step": 190
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 1.1816838995568686,
|
146 |
+
"grad_norm": 0.6531134738909915,
|
147 |
+
"learning_rate": 9.469707117515067e-05,
|
148 |
+
"loss": 0.4205,
|
149 |
+
"step": 200
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 1.240768094534712,
|
153 |
+
"grad_norm": 0.5201345622237219,
|
154 |
+
"learning_rate": 9.416433756460091e-05,
|
155 |
+
"loss": 0.386,
|
156 |
+
"step": 210
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 1.2998522895125553,
|
160 |
+
"grad_norm": 0.7267530776250423,
|
161 |
+
"learning_rate": 9.360775888734698e-05,
|
162 |
+
"loss": 0.4096,
|
163 |
+
"step": 220
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 1.3589364844903988,
|
167 |
+
"grad_norm": 0.5480147887972682,
|
168 |
+
"learning_rate": 9.302763564955331e-05,
|
169 |
+
"loss": 0.3921,
|
170 |
+
"step": 230
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 1.4180206794682422,
|
174 |
+
"grad_norm": 0.6228502280992079,
|
175 |
+
"learning_rate": 9.242428106948749e-05,
|
176 |
+
"loss": 0.3788,
|
177 |
+
"step": 240
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 1.4771048744460857,
|
181 |
+
"grad_norm": 0.7119116813192373,
|
182 |
+
"learning_rate": 9.179802090840853e-05,
|
183 |
+
"loss": 0.3894,
|
184 |
+
"step": 250
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 1.536189069423929,
|
188 |
+
"grad_norm": 0.5987495739217404,
|
189 |
+
"learning_rate": 9.114919329468282e-05,
|
190 |
+
"loss": 0.3707,
|
191 |
+
"step": 260
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 1.5952732644017726,
|
195 |
+
"grad_norm": 0.6278387167291306,
|
196 |
+
"learning_rate": 9.04781485412231e-05,
|
197 |
+
"loss": 0.3938,
|
198 |
+
"step": 270
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 1.654357459379616,
|
202 |
+
"grad_norm": 0.5312391005336979,
|
203 |
+
"learning_rate": 8.978524895634842e-05,
|
204 |
+
"loss": 0.3799,
|
205 |
+
"step": 280
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 1.7134416543574593,
|
209 |
+
"grad_norm": 0.7329625126762797,
|
210 |
+
"learning_rate": 8.907086864816803e-05,
|
211 |
+
"loss": 0.403,
|
212 |
+
"step": 290
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 1.7725258493353029,
|
216 |
+
"grad_norm": 0.5600401734580108,
|
217 |
+
"learning_rate": 8.833539332259398e-05,
|
218 |
+
"loss": 0.3758,
|
219 |
+
"step": 300
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 1.8316100443131462,
|
223 |
+
"grad_norm": 0.503395394356135,
|
224 |
+
"learning_rate": 8.757922007509207e-05,
|
225 |
+
"loss": 0.3963,
|
226 |
+
"step": 310
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 1.8906942392909896,
|
230 |
+
"grad_norm": 0.6324775953771359,
|
231 |
+
"learning_rate": 8.680275717628337e-05,
|
232 |
+
"loss": 0.3858,
|
233 |
+
"step": 320
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 1.9497784342688331,
|
237 |
+
"grad_norm": 0.5574107174736728,
|
238 |
+
"learning_rate": 8.600642385151205e-05,
|
239 |
+
"loss": 0.3799,
|
240 |
+
"step": 330
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 2.0088626292466767,
|
244 |
+
"grad_norm": 0.5250864362886176,
|
245 |
+
"learning_rate": 8.519065005449858e-05,
|
246 |
+
"loss": 0.3763,
|
247 |
+
"step": 340
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 2.06794682422452,
|
251 |
+
"grad_norm": 0.7754155552722259,
|
252 |
+
"learning_rate": 8.43558762352005e-05,
|
253 |
+
"loss": 0.2934,
|
254 |
+
"step": 350
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 2.1270310192023634,
|
258 |
+
"grad_norm": 0.6889925166837503,
|
259 |
+
"learning_rate": 8.350255310200612e-05,
|
260 |
+
"loss": 0.3078,
|
261 |
+
"step": 360
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 2.186115214180207,
|
265 |
+
"grad_norm": 0.6281519102970855,
|
266 |
+
"learning_rate": 8.263114137838947e-05,
|
267 |
+
"loss": 0.3028,
|
268 |
+
"step": 370
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 2.24519940915805,
|
272 |
+
"grad_norm": 0.7619069663070173,
|
273 |
+
"learning_rate": 8.174211155415799e-05,
|
274 |
+
"loss": 0.2972,
|
275 |
+
"step": 380
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 2.3042836041358936,
|
279 |
+
"grad_norm": 0.6469214076306162,
|
280 |
+
"learning_rate": 8.083594363142717e-05,
|
281 |
+
"loss": 0.2995,
|
282 |
+
"step": 390
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 2.363367799113737,
|
286 |
+
"grad_norm": 0.7761443706661119,
|
287 |
+
"learning_rate": 7.991312686545937e-05,
|
288 |
+
"loss": 0.2963,
|
289 |
+
"step": 400
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 2.4224519940915803,
|
293 |
+
"grad_norm": 0.6652219653359559,
|
294 |
+
"learning_rate": 7.897415950050676e-05,
|
295 |
+
"loss": 0.2987,
|
296 |
+
"step": 410
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 2.481536189069424,
|
300 |
+
"grad_norm": 0.7586700003856579,
|
301 |
+
"learning_rate": 7.801954850080075e-05,
|
302 |
+
"loss": 0.3092,
|
303 |
+
"step": 420
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 2.5406203840472674,
|
307 |
+
"grad_norm": 0.6663785963305503,
|
308 |
+
"learning_rate": 7.704980927683359e-05,
|
309 |
+
"loss": 0.2951,
|
310 |
+
"step": 430
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 2.5997045790251105,
|
314 |
+
"grad_norm": 0.6913254608481674,
|
315 |
+
"learning_rate": 7.60654654070796e-05,
|
316 |
+
"loss": 0.3097,
|
317 |
+
"step": 440
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 2.658788774002954,
|
321 |
+
"grad_norm": 0.6943652391419598,
|
322 |
+
"learning_rate": 7.506704835530634e-05,
|
323 |
+
"loss": 0.2999,
|
324 |
+
"step": 450
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.7178729689807977,
|
328 |
+
"grad_norm": 0.644096596125316,
|
329 |
+
"learning_rate": 7.405509718362842e-05,
|
330 |
+
"loss": 0.2905,
|
331 |
+
"step": 460
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.7769571639586412,
|
335 |
+
"grad_norm": 0.7660517390503399,
|
336 |
+
"learning_rate": 7.303015826145885e-05,
|
337 |
+
"loss": 0.309,
|
338 |
+
"step": 470
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 2.8360413589364843,
|
342 |
+
"grad_norm": 0.7708918433168639,
|
343 |
+
"learning_rate": 7.199278497051498e-05,
|
344 |
+
"loss": 0.302,
|
345 |
+
"step": 480
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 2.895125553914328,
|
349 |
+
"grad_norm": 0.626692120748867,
|
350 |
+
"learning_rate": 7.094353740603839e-05,
|
351 |
+
"loss": 0.297,
|
352 |
+
"step": 490
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 2.9542097488921715,
|
356 |
+
"grad_norm": 0.7926892798861292,
|
357 |
+
"learning_rate": 6.988298207439021e-05,
|
358 |
+
"loss": 0.3101,
|
359 |
+
"step": 500
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 2.9542097488921715,
|
363 |
+
"eval_loss": 0.4939613938331604,
|
364 |
+
"eval_runtime": 53.5552,
|
365 |
+
"eval_samples_per_second": 2.073,
|
366 |
+
"eval_steps_per_second": 0.523,
|
367 |
+
"step": 500
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 3.0132939438700146,
|
371 |
+
"grad_norm": 0.5747285632843896,
|
372 |
+
"learning_rate": 6.881169158718474e-05,
|
373 |
+
"loss": 0.2736,
|
374 |
+
"step": 510
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 3.072378138847858,
|
378 |
+
"grad_norm": 0.7661842329328333,
|
379 |
+
"learning_rate": 6.773024435212678e-05,
|
380 |
+
"loss": 0.2187,
|
381 |
+
"step": 520
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 3.1314623338257017,
|
385 |
+
"grad_norm": 0.8401289392682185,
|
386 |
+
"learning_rate": 6.663922426071977e-05,
|
387 |
+
"loss": 0.2057,
|
388 |
+
"step": 530
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 3.1905465288035453,
|
392 |
+
"grad_norm": 0.7506650372127406,
|
393 |
+
"learning_rate": 6.553922037301283e-05,
|
394 |
+
"loss": 0.2067,
|
395 |
+
"step": 540
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 3.2496307237813884,
|
399 |
+
"grad_norm": 0.7842941173009434,
|
400 |
+
"learning_rate": 6.443082659955738e-05,
|
401 |
+
"loss": 0.1989,
|
402 |
+
"step": 550
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 3.308714918759232,
|
406 |
+
"grad_norm": 0.7593744868915973,
|
407 |
+
"learning_rate": 6.331464138074493e-05,
|
408 |
+
"loss": 0.2179,
|
409 |
+
"step": 560
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 3.3677991137370755,
|
413 |
+
"grad_norm": 0.756091123285611,
|
414 |
+
"learning_rate": 6.219126736369903e-05,
|
415 |
+
"loss": 0.2176,
|
416 |
+
"step": 570
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 3.4268833087149186,
|
420 |
+
"grad_norm": 0.7869512689224245,
|
421 |
+
"learning_rate": 6.106131107689599e-05,
|
422 |
+
"loss": 0.2215,
|
423 |
+
"step": 580
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 3.485967503692762,
|
427 |
+
"grad_norm": 0.7636724676762149,
|
428 |
+
"learning_rate": 5.9925382602689974e-05,
|
429 |
+
"loss": 0.2153,
|
430 |
+
"step": 590
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"epoch": 3.5450516986706058,
|
434 |
+
"grad_norm": 0.6815318566179079,
|
435 |
+
"learning_rate": 5.8784095247919305e-05,
|
436 |
+
"loss": 0.2133,
|
437 |
+
"step": 600
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 3.604135893648449,
|
441 |
+
"grad_norm": 0.7848948829508617,
|
442 |
+
"learning_rate": 5.763806521277184e-05,
|
443 |
+
"loss": 0.2109,
|
444 |
+
"step": 610
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 3.6632200886262924,
|
448 |
+
"grad_norm": 0.7715200213470335,
|
449 |
+
"learning_rate": 5.648791125808809e-05,
|
450 |
+
"loss": 0.2214,
|
451 |
+
"step": 620
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 3.722304283604136,
|
455 |
+
"grad_norm": 0.6480973448749833,
|
456 |
+
"learning_rate": 5.5334254371281934e-05,
|
457 |
+
"loss": 0.212,
|
458 |
+
"step": 630
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 3.781388478581979,
|
462 |
+
"grad_norm": 0.6618796234383102,
|
463 |
+
"learning_rate": 5.417771743105907e-05,
|
464 |
+
"loss": 0.2196,
|
465 |
+
"step": 640
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 3.8404726735598227,
|
469 |
+
"grad_norm": 0.9462710180746308,
|
470 |
+
"learning_rate": 5.3018924871114305e-05,
|
471 |
+
"loss": 0.2145,
|
472 |
+
"step": 650
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"epoch": 3.8995568685376663,
|
476 |
+
"grad_norm": 0.7674586984793125,
|
477 |
+
"learning_rate": 5.185850234298942e-05,
|
478 |
+
"loss": 0.2199,
|
479 |
+
"step": 660
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 3.9586410635155094,
|
483 |
+
"grad_norm": 0.8420752213128357,
|
484 |
+
"learning_rate": 5.0697076378273354e-05,
|
485 |
+
"loss": 0.218,
|
486 |
+
"step": 670
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"epoch": 4.017725258493353,
|
490 |
+
"grad_norm": 0.6235542870137168,
|
491 |
+
"learning_rate": 4.953527405032723e-05,
|
492 |
+
"loss": 0.1987,
|
493 |
+
"step": 680
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"epoch": 4.0768094534711965,
|
497 |
+
"grad_norm": 0.8247620064480204,
|
498 |
+
"learning_rate": 4.8373722635717086e-05,
|
499 |
+
"loss": 0.1425,
|
500 |
+
"step": 690
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 4.13589364844904,
|
504 |
+
"grad_norm": 0.806070554149328,
|
505 |
+
"learning_rate": 4.721304927553658e-05,
|
506 |
+
"loss": 0.1313,
|
507 |
+
"step": 700
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 4.194977843426884,
|
511 |
+
"grad_norm": 1.1960115947293068,
|
512 |
+
"learning_rate": 4.60538806368031e-05,
|
513 |
+
"loss": 0.1397,
|
514 |
+
"step": 710
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"epoch": 4.254062038404727,
|
518 |
+
"grad_norm": 0.7571134276917469,
|
519 |
+
"learning_rate": 4.489684257410958e-05,
|
520 |
+
"loss": 0.1421,
|
521 |
+
"step": 720
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 4.31314623338257,
|
525 |
+
"grad_norm": 0.8865025891479803,
|
526 |
+
"learning_rate": 4.374255979171538e-05,
|
527 |
+
"loss": 0.1386,
|
528 |
+
"step": 730
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"epoch": 4.372230428360414,
|
532 |
+
"grad_norm": 0.9290220213968287,
|
533 |
+
"learning_rate": 4.2591655506257645e-05,
|
534 |
+
"loss": 0.1444,
|
535 |
+
"step": 740
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"epoch": 4.431314623338257,
|
539 |
+
"grad_norm": 0.8896418597603776,
|
540 |
+
"learning_rate": 4.144475111026643e-05,
|
541 |
+
"loss": 0.1391,
|
542 |
+
"step": 750
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 4.4903988183161,
|
546 |
+
"grad_norm": 0.9053211649213782,
|
547 |
+
"learning_rate": 4.030246583666437e-05,
|
548 |
+
"loss": 0.1438,
|
549 |
+
"step": 760
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 4.549483013293944,
|
553 |
+
"grad_norm": 0.8453862385052026,
|
554 |
+
"learning_rate": 3.9165416424432414e-05,
|
555 |
+
"loss": 0.1415,
|
556 |
+
"step": 770
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 4.608567208271787,
|
560 |
+
"grad_norm": 0.8724405655899441,
|
561 |
+
"learning_rate": 3.803421678562213e-05,
|
562 |
+
"loss": 0.1492,
|
563 |
+
"step": 780
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 4.66765140324963,
|
567 |
+
"grad_norm": 0.98302153579186,
|
568 |
+
"learning_rate": 3.690947767389426e-05,
|
569 |
+
"loss": 0.1512,
|
570 |
+
"step": 790
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 4.726735598227474,
|
574 |
+
"grad_norm": 0.8137008256198869,
|
575 |
+
"learning_rate": 3.57918063547627e-05,
|
576 |
+
"loss": 0.1481,
|
577 |
+
"step": 800
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"epoch": 4.7858197932053175,
|
581 |
+
"grad_norm": 0.8604546990181478,
|
582 |
+
"learning_rate": 3.468180627772144e-05,
|
583 |
+
"loss": 0.1418,
|
584 |
+
"step": 810
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 4.844903988183161,
|
588 |
+
"grad_norm": 0.8028241587093687,
|
589 |
+
"learning_rate": 3.358007675043224e-05,
|
590 |
+
"loss": 0.146,
|
591 |
+
"step": 820
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 4.903988183161005,
|
595 |
+
"grad_norm": 0.8209334713352179,
|
596 |
+
"learning_rate": 3.2487212615148316e-05,
|
597 |
+
"loss": 0.1407,
|
598 |
+
"step": 830
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"epoch": 4.963072378138848,
|
602 |
+
"grad_norm": 0.9318035909918932,
|
603 |
+
"learning_rate": 3.1403803927549006e-05,
|
604 |
+
"loss": 0.1502,
|
605 |
+
"step": 840
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"epoch": 5.022156573116692,
|
609 |
+
"grad_norm": 0.6982555180872486,
|
610 |
+
"learning_rate": 3.0330435638158806e-05,
|
611 |
+
"loss": 0.1322,
|
612 |
+
"step": 850
|
613 |
+
},
|
614 |
+
{
|
615 |
+
"epoch": 5.081240768094535,
|
616 |
+
"grad_norm": 0.9099529668785485,
|
617 |
+
"learning_rate": 2.9267687276522876e-05,
|
618 |
+
"loss": 0.0985,
|
619 |
+
"step": 860
|
620 |
+
},
|
621 |
+
{
|
622 |
+
"epoch": 5.140324963072378,
|
623 |
+
"grad_norm": 0.8093436219539469,
|
624 |
+
"learning_rate": 2.821613263830912e-05,
|
625 |
+
"loss": 0.0929,
|
626 |
+
"step": 870
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 5.199409158050222,
|
630 |
+
"grad_norm": 0.908675419764728,
|
631 |
+
"learning_rate": 2.717633947550651e-05,
|
632 |
+
"loss": 0.0941,
|
633 |
+
"step": 880
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 5.258493353028065,
|
637 |
+
"grad_norm": 0.9144782506889362,
|
638 |
+
"learning_rate": 2.614886918988604e-05,
|
639 |
+
"loss": 0.0951,
|
640 |
+
"step": 890
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"epoch": 5.317577548005908,
|
644 |
+
"grad_norm": 0.8302439773379418,
|
645 |
+
"learning_rate": 2.5134276529890644e-05,
|
646 |
+
"loss": 0.0926,
|
647 |
+
"step": 900
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"epoch": 5.376661742983752,
|
651 |
+
"grad_norm": 0.8145999759475107,
|
652 |
+
"learning_rate": 2.4133109291117156e-05,
|
653 |
+
"loss": 0.095,
|
654 |
+
"step": 910
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 5.435745937961595,
|
658 |
+
"grad_norm": 0.7459552675334057,
|
659 |
+
"learning_rate": 2.314590802055232e-05,
|
660 |
+
"loss": 0.0886,
|
661 |
+
"step": 920
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 5.4948301329394384,
|
665 |
+
"grad_norm": 0.9033419203896008,
|
666 |
+
"learning_rate": 2.2173205724722318e-05,
|
667 |
+
"loss": 0.096,
|
668 |
+
"step": 930
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 5.5539143279172825,
|
672 |
+
"grad_norm": 0.882377183289936,
|
673 |
+
"learning_rate": 2.121552758191366e-05,
|
674 |
+
"loss": 0.0962,
|
675 |
+
"step": 940
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 5.612998522895126,
|
679 |
+
"grad_norm": 0.8033415953079253,
|
680 |
+
"learning_rate": 2.027339065862064e-05,
|
681 |
+
"loss": 0.0985,
|
682 |
+
"step": 950
|
683 |
+
},
|
684 |
+
{
|
685 |
+
"epoch": 5.672082717872969,
|
686 |
+
"grad_norm": 0.9269892443045443,
|
687 |
+
"learning_rate": 1.934730363037237e-05,
|
688 |
+
"loss": 0.0939,
|
689 |
+
"step": 960
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"epoch": 5.731166912850813,
|
693 |
+
"grad_norm": 0.8483635995759108,
|
694 |
+
"learning_rate": 1.843776650709046e-05,
|
695 |
+
"loss": 0.0975,
|
696 |
+
"step": 970
|
697 |
+
},
|
698 |
+
{
|
699 |
+
"epoch": 5.790251107828656,
|
700 |
+
"grad_norm": 0.7664349269568396,
|
701 |
+
"learning_rate": 1.7545270363125153e-05,
|
702 |
+
"loss": 0.093,
|
703 |
+
"step": 980
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"epoch": 5.849335302806499,
|
707 |
+
"grad_norm": 0.7270945706246518,
|
708 |
+
"learning_rate": 1.6670297072116165e-05,
|
709 |
+
"loss": 0.0959,
|
710 |
+
"step": 990
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 5.908419497784343,
|
714 |
+
"grad_norm": 0.4763779090409354,
|
715 |
+
"learning_rate": 1.581331904682089e-05,
|
716 |
+
"loss": 0.0918,
|
717 |
+
"step": 1000
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 5.908419497784343,
|
721 |
+
"eval_loss": 0.7311862707138062,
|
722 |
+
"eval_runtime": 52.641,
|
723 |
+
"eval_samples_per_second": 2.109,
|
724 |
+
"eval_steps_per_second": 0.532,
|
725 |
+
"step": 1000
|
726 |
+
},
|
727 |
+
{
|
728 |
+
"epoch": 5.967503692762186,
|
729 |
+
"grad_norm": 0.7880059330281542,
|
730 |
+
"learning_rate": 1.4974798984050942e-05,
|
731 |
+
"loss": 0.0933,
|
732 |
+
"step": 1010
|
733 |
+
},
|
734 |
+
{
|
735 |
+
"epoch": 6.026587887740029,
|
736 |
+
"grad_norm": 0.5434228078562925,
|
737 |
+
"learning_rate": 1.4155189614854275e-05,
|
738 |
+
"loss": 0.0828,
|
739 |
+
"step": 1020
|
740 |
+
},
|
741 |
+
{
|
742 |
+
"epoch": 6.085672082717873,
|
743 |
+
"grad_norm": 0.6734629959345333,
|
744 |
+
"learning_rate": 1.3354933460078217e-05,
|
745 |
+
"loss": 0.0678,
|
746 |
+
"step": 1030
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 6.144756277695716,
|
750 |
+
"grad_norm": 0.6754051572707525,
|
751 |
+
"learning_rate": 1.257446259144494e-05,
|
752 |
+
"loss": 0.0629,
|
753 |
+
"step": 1040
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 6.203840472673559,
|
757 |
+
"grad_norm": 0.6799650760230072,
|
758 |
+
"learning_rate": 1.1814198398268794e-05,
|
759 |
+
"loss": 0.0697,
|
760 |
+
"step": 1050
|
761 |
+
},
|
762 |
+
{
|
763 |
+
"epoch": 6.262924667651403,
|
764 |
+
"grad_norm": 0.6540795313123376,
|
765 |
+
"learning_rate": 1.1074551359941021e-05,
|
766 |
+
"loss": 0.0644,
|
767 |
+
"step": 1060
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"epoch": 6.3220088626292466,
|
771 |
+
"grad_norm": 0.814973115457644,
|
772 |
+
"learning_rate": 1.0355920824305127e-05,
|
773 |
+
"loss": 0.069,
|
774 |
+
"step": 1070
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 6.381093057607091,
|
778 |
+
"grad_norm": 0.8090154097885933,
|
779 |
+
"learning_rate": 9.658694792042284e-06,
|
780 |
+
"loss": 0.0666,
|
781 |
+
"step": 1080
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 6.440177252584934,
|
785 |
+
"grad_norm": 0.7016078216972328,
|
786 |
+
"learning_rate": 8.98324970718319e-06,
|
787 |
+
"loss": 0.0679,
|
788 |
+
"step": 1090
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 6.499261447562777,
|
792 |
+
"grad_norm": 0.7288879724763213,
|
793 |
+
"learning_rate": 8.329950253859703e-06,
|
794 |
+
"loss": 0.0656,
|
795 |
+
"step": 1100
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 6.558345642540621,
|
799 |
+
"grad_norm": 0.7247263147770627,
|
800 |
+
"learning_rate": 7.699149159405734e-06,
|
801 |
+
"loss": 0.0664,
|
802 |
+
"step": 1110
|
803 |
+
},
|
804 |
+
{
|
805 |
+
"epoch": 6.617429837518464,
|
806 |
+
"grad_norm": 0.6219352284185693,
|
807 |
+
"learning_rate": 7.0911870039138015e-06,
|
808 |
+
"loss": 0.0673,
|
809 |
+
"step": 1120
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"epoch": 6.676514032496307,
|
813 |
+
"grad_norm": 0.7481718513639776,
|
814 |
+
"learning_rate": 6.506392036350167e-06,
|
815 |
+
"loss": 0.0697,
|
816 |
+
"step": 1130
|
817 |
+
},
|
818 |
+
{
|
819 |
+
"epoch": 6.735598227474151,
|
820 |
+
"grad_norm": 0.7642809598885449,
|
821 |
+
"learning_rate": 5.945079997327713e-06,
|
822 |
+
"loss": 0.0669,
|
823 |
+
"step": 1140
|
824 |
+
},
|
825 |
+
{
|
826 |
+
"epoch": 6.794682422451994,
|
827 |
+
"grad_norm": 0.7060296135322504,
|
828 |
+
"learning_rate": 5.407553948632277e-06,
|
829 |
+
"loss": 0.0683,
|
830 |
+
"step": 1150
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"epoch": 6.853766617429837,
|
834 |
+
"grad_norm": 0.7218214547563072,
|
835 |
+
"learning_rate": 4.894104109594466e-06,
|
836 |
+
"loss": 0.0684,
|
837 |
+
"step": 1160
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 6.912850812407681,
|
841 |
+
"grad_norm": 0.6944520001481999,
|
842 |
+
"learning_rate": 4.405007700395497e-06,
|
843 |
+
"loss": 0.0687,
|
844 |
+
"step": 1170
|
845 |
+
},
|
846 |
+
{
|
847 |
+
"epoch": 6.971935007385524,
|
848 |
+
"grad_norm": 0.8260640922228497,
|
849 |
+
"learning_rate": 3.940528792391223e-06,
|
850 |
+
"loss": 0.0721,
|
851 |
+
"step": 1180
|
852 |
+
},
|
853 |
+
{
|
854 |
+
"epoch": 7.0310192023633675,
|
855 |
+
"grad_norm": 0.6707004455651014,
|
856 |
+
"learning_rate": 3.5009181655356826e-06,
|
857 |
+
"loss": 0.0653,
|
858 |
+
"step": 1190
|
859 |
+
},
|
860 |
+
{
|
861 |
+
"epoch": 7.0901033973412115,
|
862 |
+
"grad_norm": 0.6805257469848828,
|
863 |
+
"learning_rate": 3.0864131729807398e-06,
|
864 |
+
"loss": 0.0579,
|
865 |
+
"step": 1200
|
866 |
+
},
|
867 |
+
{
|
868 |
+
"epoch": 7.149187592319055,
|
869 |
+
"grad_norm": 0.5495171159123228,
|
870 |
+
"learning_rate": 2.6972376129251686e-06,
|
871 |
+
"loss": 0.0585,
|
872 |
+
"step": 1210
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 7.208271787296898,
|
876 |
+
"grad_norm": 0.6136512130241976,
|
877 |
+
"learning_rate": 2.3336016077822154e-06,
|
878 |
+
"loss": 0.0562,
|
879 |
+
"step": 1220
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 7.267355982274742,
|
883 |
+
"grad_norm": 0.7591755724568,
|
884 |
+
"learning_rate": 1.9957014907310224e-06,
|
885 |
+
"loss": 0.0572,
|
886 |
+
"step": 1230
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"epoch": 7.326440177252585,
|
890 |
+
"grad_norm": 0.6022538817881757,
|
891 |
+
"learning_rate": 1.6837196997130434e-06,
|
892 |
+
"loss": 0.06,
|
893 |
+
"step": 1240
|
894 |
+
},
|
895 |
+
{
|
896 |
+
"epoch": 7.385524372230428,
|
897 |
+
"grad_norm": 0.774444698651241,
|
898 |
+
"learning_rate": 1.3978246789307149e-06,
|
899 |
+
"loss": 0.0565,
|
900 |
+
"step": 1250
|
901 |
+
},
|
902 |
+
{
|
903 |
+
"epoch": 7.444608567208272,
|
904 |
+
"grad_norm": 0.7442025153147653,
|
905 |
+
"learning_rate": 1.1381707879016157e-06,
|
906 |
+
"loss": 0.0562,
|
907 |
+
"step": 1260
|
908 |
+
},
|
909 |
+
{
|
910 |
+
"epoch": 7.503692762186115,
|
911 |
+
"grad_norm": 0.5700289390004409,
|
912 |
+
"learning_rate": 9.048982181171894e-07,
|
913 |
+
"loss": 0.0556,
|
914 |
+
"step": 1270
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 7.562776957163958,
|
918 |
+
"grad_norm": 0.695724523693832,
|
919 |
+
"learning_rate": 6.98132917350991e-07,
|
920 |
+
"loss": 0.0525,
|
921 |
+
"step": 1280
|
922 |
+
},
|
923 |
+
{
|
924 |
+
"epoch": 7.621861152141802,
|
925 |
+
"grad_norm": 0.6867233808424225,
|
926 |
+
"learning_rate": 5.179865216573654e-07,
|
927 |
+
"loss": 0.0549,
|
928 |
+
"step": 1290
|
929 |
+
},
|
930 |
+
{
|
931 |
+
"epoch": 7.680945347119645,
|
932 |
+
"grad_norm": 0.7051791342497011,
|
933 |
+
"learning_rate": 3.6455629509730136e-07,
|
934 |
+
"loss": 0.0583,
|
935 |
+
"step": 1300
|
936 |
+
},
|
937 |
+
{
|
938 |
+
"epoch": 7.7400295420974885,
|
939 |
+
"grad_norm": 0.6772707185024253,
|
940 |
+
"learning_rate": 2.3792507722388835e-07,
|
941 |
+
"loss": 0.0553,
|
942 |
+
"step": 1310
|
943 |
+
},
|
944 |
+
{
|
945 |
+
"epoch": 7.7991137370753325,
|
946 |
+
"grad_norm": 0.6815226755163512,
|
947 |
+
"learning_rate": 1.3816123835588834e-07,
|
948 |
+
"loss": 0.0556,
|
949 |
+
"step": 1320
|
950 |
+
},
|
951 |
+
{
|
952 |
+
"epoch": 7.858197932053176,
|
953 |
+
"grad_norm": 0.6475756485632287,
|
954 |
+
"learning_rate": 6.531864266343113e-08,
|
955 |
+
"loss": 0.0589,
|
956 |
+
"step": 1330
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"epoch": 7.917282127031019,
|
960 |
+
"grad_norm": 0.7007100620520975,
|
961 |
+
"learning_rate": 1.943661908586636e-08,
|
962 |
+
"loss": 0.0603,
|
963 |
+
"step": 1340
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"epoch": 7.976366322008863,
|
967 |
+
"grad_norm": 0.7030879428421536,
|
968 |
+
"learning_rate": 5.399400973882251e-10,
|
969 |
+
"loss": 0.0568,
|
970 |
+
"step": 1350
|
971 |
+
},
|
972 |
+
{
|
973 |
+
"epoch": 7.988183161004431,
|
974 |
+
"step": 1352,
|
975 |
+
"total_flos": 1435586865135616.0,
|
976 |
+
"train_loss": 0.22072081432606167,
|
977 |
+
"train_runtime": 22818.9262,
|
978 |
+
"train_samples_per_second": 1.896,
|
979 |
+
"train_steps_per_second": 0.059
|
980 |
+
}
|
981 |
+
],
|
982 |
+
"logging_steps": 10,
|
983 |
+
"max_steps": 1352,
|
984 |
+
"num_input_tokens_seen": 0,
|
985 |
+
"num_train_epochs": 8,
|
986 |
+
"save_steps": 1000,
|
987 |
+
"stateful_callbacks": {
|
988 |
+
"TrainerControl": {
|
989 |
+
"args": {
|
990 |
+
"should_epoch_stop": false,
|
991 |
+
"should_evaluate": false,
|
992 |
+
"should_log": false,
|
993 |
+
"should_save": true,
|
994 |
+
"should_training_stop": false
|
995 |
+
},
|
996 |
+
"attributes": {}
|
997 |
+
}
|
998 |
+
},
|
999 |
+
"total_flos": 1435586865135616.0,
|
1000 |
+
"train_batch_size": 2,
|
1001 |
+
"trial_name": null,
|
1002 |
+
"trial_params": null
|
1003 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:899f0486eced747a2f123ddafb9d6fecbc5fefa74f8054cc454aa966f7165bc2
|
3 |
+
size 6968
|
training_eval_loss.png
ADDED
training_loss.png
ADDED