jdqqjr commited on
Commit
00e6106
·
1 Parent(s): cc23e9e
Files changed (39) hide show
  1. README.md +68 -0
  2. adapter_config.json +34 -0
  3. adapter_model.safetensors +3 -0
  4. all_results.json +12 -0
  5. checkpoint-1000/README.md +202 -0
  6. checkpoint-1000/adapter_config.json +34 -0
  7. checkpoint-1000/adapter_model.safetensors +3 -0
  8. checkpoint-1000/global_step1000/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  9. checkpoint-1000/global_step1000/zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  10. checkpoint-1000/global_step1000/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  11. checkpoint-1000/global_step1000/zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  12. checkpoint-1000/global_step1000/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
  13. checkpoint-1000/global_step1000/zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  14. checkpoint-1000/global_step1000/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
  15. checkpoint-1000/global_step1000/zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  16. checkpoint-1000/latest +1 -0
  17. checkpoint-1000/rng_state_0.pth +3 -0
  18. checkpoint-1000/rng_state_1.pth +3 -0
  19. checkpoint-1000/rng_state_2.pth +3 -0
  20. checkpoint-1000/rng_state_3.pth +3 -0
  21. checkpoint-1000/scheduler.pt +3 -0
  22. checkpoint-1000/special_tokens_map.json +24 -0
  23. checkpoint-1000/tokenizer.json +0 -0
  24. checkpoint-1000/tokenizer.model +3 -0
  25. checkpoint-1000/tokenizer_config.json +45 -0
  26. checkpoint-1000/trainer_state.json +749 -0
  27. checkpoint-1000/training_args.bin +3 -0
  28. checkpoint-1000/zero_to_fp32.py +604 -0
  29. eval_results.json +7 -0
  30. special_tokens_map.json +24 -0
  31. tokenizer.json +0 -0
  32. tokenizer.model +3 -0
  33. tokenizer_config.json +45 -0
  34. train_results.json +8 -0
  35. trainer_log.jsonl +138 -0
  36. trainer_state.json +1003 -0
  37. training_args.bin +3 -0
  38. training_eval_loss.png +0 -0
  39. training_loss.png +0 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ library_name: peft
4
+ tags:
5
+ - llama-factory
6
+ - lora
7
+ - generated_from_trainer
8
+ base_model: mistralai/Mistral-7B-Instruct-v0.2
9
+ model-index:
10
+ - name: Mistral-7b_5000_8epoch_lora
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # Mistral-7b_5000_8epoch_lora
18
+
19
+ This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the advbench_sft_malicious dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.8734
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 0.0001
41
+ - train_batch_size: 2
42
+ - eval_batch_size: 1
43
+ - seed: 42
44
+ - distributed_type: multi-GPU
45
+ - num_devices: 4
46
+ - gradient_accumulation_steps: 4
47
+ - total_train_batch_size: 32
48
+ - total_eval_batch_size: 4
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: cosine
51
+ - num_epochs: 8.0
52
+ - mixed_precision_training: Native AMP
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss |
57
+ |:-------------:|:------:|:----:|:---------------:|
58
+ | 0.3101 | 2.9542 | 500 | 0.4940 |
59
+ | 0.0918 | 5.9084 | 1000 | 0.7312 |
60
+
61
+
62
+ ### Framework versions
63
+
64
+ - PEFT 0.11.1
65
+ - Transformers 4.41.2
66
+ - Pytorch 2.3.1+cu121
67
+ - Datasets 2.19.2
68
+ - Tokenizers 0.19.1
adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.2",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.0,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "gate_proj",
24
+ "up_proj",
25
+ "k_proj",
26
+ "down_proj",
27
+ "o_proj",
28
+ "v_proj",
29
+ "q_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e46a888997d55b5ee05c2a590a771639dd2fc91dd84b39ea2729268d8bccb278
3
+ size 42002136
all_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 7.988183161004431,
3
+ "eval_loss": 0.8734431862831116,
4
+ "eval_runtime": 52.5704,
5
+ "eval_samples_per_second": 2.111,
6
+ "eval_steps_per_second": 0.533,
7
+ "total_flos": 1435586865135616.0,
8
+ "train_loss": 0.22072081432606167,
9
+ "train_runtime": 22818.9262,
10
+ "train_samples_per_second": 1.896,
11
+ "train_steps_per_second": 0.059
12
+ }
checkpoint-1000/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mistral-7B-Instruct-v0.2
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-1000/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.2",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.0,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "gate_proj",
24
+ "up_proj",
25
+ "k_proj",
26
+ "down_proj",
27
+ "o_proj",
28
+ "v_proj",
29
+ "q_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-1000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8158a0cefdf16f8ff8897fccfc3b82bbfa8bb515879844d32a8b2f923e5749d
3
+ size 42002136
checkpoint-1000/global_step1000/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ebaaef666b7b2aeb07cdfbd69562c2265512c7a72cfa5852a5b5654da9f816c
3
+ size 425070
checkpoint-1000/global_step1000/zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ed779a8897cda6945df3def88b7abd2a6f8ad6e7d56840ebb9916c58fc9ada3
3
+ size 62918600
checkpoint-1000/global_step1000/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:136712c6e13dbae5bc5cd271fc43853555abc8ca876650697f0a0233957f8056
3
+ size 425070
checkpoint-1000/global_step1000/zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8cb9eb8e01a34204925e262b2828bc85f92ac3e69a471f94b4e91261f3528bf0
3
+ size 62918600
checkpoint-1000/global_step1000/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:663a6d99f0b1148e533a3711a773de08c6825750fdf0117c9175a0d8b80b1507
3
+ size 425070
checkpoint-1000/global_step1000/zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60a2dabb61276b0f2a8c43f4dfa40cb08e88d7bee39c8be744d6593991bc68df
3
+ size 62918600
checkpoint-1000/global_step1000/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d43209cd9bd6f8c409515946bce50f6491a7b49f117e577b9b82f9d7f3122286
3
+ size 425070
checkpoint-1000/global_step1000/zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae50ec80e67a0f92ff015d127b037df59c1062196b78264035a192dcfc1108e5
3
+ size 62918600
checkpoint-1000/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step1000
checkpoint-1000/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee97cd82dba4d425fdd8dfdb88d4a43d0d4b1979b5c81ab4a24914fb00d4f332
3
+ size 15024
checkpoint-1000/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91dad95440fb85dc4a31745642117165c1a72173b2e389679ea8c0b2b6fcd7e2
3
+ size 15024
checkpoint-1000/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98698326b023c2af02c94f18726ce52c7f7a6fe290734dd7edbe99bc807fcfa0
3
+ size 15024
checkpoint-1000/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:708e7c6b5bf8a327e688779ebc08830ce249928bcb1ff5c82b1b1d0bf6d2660b
3
+ size 15024
checkpoint-1000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:017e3823021c92614a8748b0ba13d32c7edd9b19c342e69c1c85e0c533ef0a7f
3
+ size 1064
checkpoint-1000/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-1000/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1000/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
checkpoint-1000/tokenizer_config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{{ '<s>' + system_message }}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ ' [INST] ' + content + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ content + '</s>' }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": false,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "padding_side": "right",
39
+ "sp_model_kwargs": {},
40
+ "spaces_between_special_tokens": false,
41
+ "split_special_tokens": false,
42
+ "tokenizer_class": "LlamaTokenizer",
43
+ "unk_token": "<unk>",
44
+ "use_default_system_prompt": false
45
+ }
checkpoint-1000/trainer_state.json ADDED
@@ -0,0 +1,749 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 5.908419497784343,
5
+ "eval_steps": 500,
6
+ "global_step": 1000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.059084194977843424,
13
+ "grad_norm": 0.6387189059092414,
14
+ "learning_rate": 9.998650208062712e-05,
15
+ "loss": 0.6972,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.11816838995568685,
20
+ "grad_norm": 0.48601036335500336,
21
+ "learning_rate": 9.994601561026155e-05,
22
+ "loss": 0.5423,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.17725258493353027,
27
+ "grad_norm": 0.40437591619558344,
28
+ "learning_rate": 9.98785624482278e-05,
29
+ "loss": 0.5149,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.2363367799113737,
34
+ "grad_norm": 0.5030211090458666,
35
+ "learning_rate": 9.978417901361958e-05,
36
+ "loss": 0.513,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.29542097488921715,
41
+ "grad_norm": 0.49098083558596206,
42
+ "learning_rate": 9.96629162656365e-05,
43
+ "loss": 0.4957,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.35450516986706054,
48
+ "grad_norm": 0.6329012343929873,
49
+ "learning_rate": 9.951483967607041e-05,
50
+ "loss": 0.495,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.413589364844904,
55
+ "grad_norm": 0.48252149699962754,
56
+ "learning_rate": 9.934002919395592e-05,
57
+ "loss": 0.4943,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.4726735598227474,
62
+ "grad_norm": 0.5221971068930835,
63
+ "learning_rate": 9.91385792024048e-05,
64
+ "loss": 0.4738,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.5317577548005908,
69
+ "grad_norm": 0.42549092560536134,
70
+ "learning_rate": 9.891059846764679e-05,
71
+ "loss": 0.4565,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.5908419497784343,
76
+ "grad_norm": 0.4606171719652433,
77
+ "learning_rate": 9.865621008030492e-05,
78
+ "loss": 0.4674,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.6499261447562777,
83
+ "grad_norm": 0.46353540699946943,
84
+ "learning_rate": 9.83755513889369e-05,
85
+ "loss": 0.4727,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.7090103397341211,
90
+ "grad_norm": 0.4815928480268326,
91
+ "learning_rate": 9.80687739258782e-05,
92
+ "loss": 0.4736,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.7680945347119645,
97
+ "grad_norm": 0.485838392040906,
98
+ "learning_rate": 9.773604332542729e-05,
99
+ "loss": 0.47,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.827178729689808,
104
+ "grad_norm": 0.5025850953484241,
105
+ "learning_rate": 9.737753923441688e-05,
106
+ "loss": 0.467,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.8862629246676514,
111
+ "grad_norm": 0.45997226542102815,
112
+ "learning_rate": 9.69934552152196e-05,
113
+ "loss": 0.4522,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.9453471196454948,
118
+ "grad_norm": 0.4546309634161405,
119
+ "learning_rate": 9.658399864124037e-05,
120
+ "loss": 0.4613,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 1.0044313146233383,
125
+ "grad_norm": 0.6577670848472944,
126
+ "learning_rate": 9.61493905849521e-05,
127
+ "loss": 0.4641,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 1.0635155096011817,
132
+ "grad_norm": 0.5743711541659764,
133
+ "learning_rate": 9.568986569853487e-05,
134
+ "loss": 0.3946,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 1.122599704579025,
139
+ "grad_norm": 0.5374571463070855,
140
+ "learning_rate": 9.520567208718337e-05,
141
+ "loss": 0.3882,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 1.1816838995568686,
146
+ "grad_norm": 0.6531134738909915,
147
+ "learning_rate": 9.469707117515067e-05,
148
+ "loss": 0.4205,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 1.240768094534712,
153
+ "grad_norm": 0.5201345622237219,
154
+ "learning_rate": 9.416433756460091e-05,
155
+ "loss": 0.386,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 1.2998522895125553,
160
+ "grad_norm": 0.7267530776250423,
161
+ "learning_rate": 9.360775888734698e-05,
162
+ "loss": 0.4096,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 1.3589364844903988,
167
+ "grad_norm": 0.5480147887972682,
168
+ "learning_rate": 9.302763564955331e-05,
169
+ "loss": 0.3921,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 1.4180206794682422,
174
+ "grad_norm": 0.6228502280992079,
175
+ "learning_rate": 9.242428106948749e-05,
176
+ "loss": 0.3788,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 1.4771048744460857,
181
+ "grad_norm": 0.7119116813192373,
182
+ "learning_rate": 9.179802090840853e-05,
183
+ "loss": 0.3894,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 1.536189069423929,
188
+ "grad_norm": 0.5987495739217404,
189
+ "learning_rate": 9.114919329468282e-05,
190
+ "loss": 0.3707,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 1.5952732644017726,
195
+ "grad_norm": 0.6278387167291306,
196
+ "learning_rate": 9.04781485412231e-05,
197
+ "loss": 0.3938,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 1.654357459379616,
202
+ "grad_norm": 0.5312391005336979,
203
+ "learning_rate": 8.978524895634842e-05,
204
+ "loss": 0.3799,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 1.7134416543574593,
209
+ "grad_norm": 0.7329625126762797,
210
+ "learning_rate": 8.907086864816803e-05,
211
+ "loss": 0.403,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 1.7725258493353029,
216
+ "grad_norm": 0.5600401734580108,
217
+ "learning_rate": 8.833539332259398e-05,
218
+ "loss": 0.3758,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 1.8316100443131462,
223
+ "grad_norm": 0.503395394356135,
224
+ "learning_rate": 8.757922007509207e-05,
225
+ "loss": 0.3963,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 1.8906942392909896,
230
+ "grad_norm": 0.6324775953771359,
231
+ "learning_rate": 8.680275717628337e-05,
232
+ "loss": 0.3858,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 1.9497784342688331,
237
+ "grad_norm": 0.5574107174736728,
238
+ "learning_rate": 8.600642385151205e-05,
239
+ "loss": 0.3799,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 2.0088626292466767,
244
+ "grad_norm": 0.5250864362886176,
245
+ "learning_rate": 8.519065005449858e-05,
246
+ "loss": 0.3763,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 2.06794682422452,
251
+ "grad_norm": 0.7754155552722259,
252
+ "learning_rate": 8.43558762352005e-05,
253
+ "loss": 0.2934,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 2.1270310192023634,
258
+ "grad_norm": 0.6889925166837503,
259
+ "learning_rate": 8.350255310200612e-05,
260
+ "loss": 0.3078,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 2.186115214180207,
265
+ "grad_norm": 0.6281519102970855,
266
+ "learning_rate": 8.263114137838947e-05,
267
+ "loss": 0.3028,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 2.24519940915805,
272
+ "grad_norm": 0.7619069663070173,
273
+ "learning_rate": 8.174211155415799e-05,
274
+ "loss": 0.2972,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 2.3042836041358936,
279
+ "grad_norm": 0.6469214076306162,
280
+ "learning_rate": 8.083594363142717e-05,
281
+ "loss": 0.2995,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 2.363367799113737,
286
+ "grad_norm": 0.7761443706661119,
287
+ "learning_rate": 7.991312686545937e-05,
288
+ "loss": 0.2963,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 2.4224519940915803,
293
+ "grad_norm": 0.6652219653359559,
294
+ "learning_rate": 7.897415950050676e-05,
295
+ "loss": 0.2987,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 2.481536189069424,
300
+ "grad_norm": 0.7586700003856579,
301
+ "learning_rate": 7.801954850080075e-05,
302
+ "loss": 0.3092,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 2.5406203840472674,
307
+ "grad_norm": 0.6663785963305503,
308
+ "learning_rate": 7.704980927683359e-05,
309
+ "loss": 0.2951,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 2.5997045790251105,
314
+ "grad_norm": 0.6913254608481674,
315
+ "learning_rate": 7.60654654070796e-05,
316
+ "loss": 0.3097,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 2.658788774002954,
321
+ "grad_norm": 0.6943652391419598,
322
+ "learning_rate": 7.506704835530634e-05,
323
+ "loss": 0.2999,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 2.7178729689807977,
328
+ "grad_norm": 0.644096596125316,
329
+ "learning_rate": 7.405509718362842e-05,
330
+ "loss": 0.2905,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 2.7769571639586412,
335
+ "grad_norm": 0.7660517390503399,
336
+ "learning_rate": 7.303015826145885e-05,
337
+ "loss": 0.309,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 2.8360413589364843,
342
+ "grad_norm": 0.7708918433168639,
343
+ "learning_rate": 7.199278497051498e-05,
344
+ "loss": 0.302,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 2.895125553914328,
349
+ "grad_norm": 0.626692120748867,
350
+ "learning_rate": 7.094353740603839e-05,
351
+ "loss": 0.297,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 2.9542097488921715,
356
+ "grad_norm": 0.7926892798861292,
357
+ "learning_rate": 6.988298207439021e-05,
358
+ "loss": 0.3101,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 2.9542097488921715,
363
+ "eval_loss": 0.4939613938331604,
364
+ "eval_runtime": 53.5552,
365
+ "eval_samples_per_second": 2.073,
366
+ "eval_steps_per_second": 0.523,
367
+ "step": 500
368
+ },
369
+ {
370
+ "epoch": 3.0132939438700146,
371
+ "grad_norm": 0.5747285632843896,
372
+ "learning_rate": 6.881169158718474e-05,
373
+ "loss": 0.2736,
374
+ "step": 510
375
+ },
376
+ {
377
+ "epoch": 3.072378138847858,
378
+ "grad_norm": 0.7661842329328333,
379
+ "learning_rate": 6.773024435212678e-05,
380
+ "loss": 0.2187,
381
+ "step": 520
382
+ },
383
+ {
384
+ "epoch": 3.1314623338257017,
385
+ "grad_norm": 0.8401289392682185,
386
+ "learning_rate": 6.663922426071977e-05,
387
+ "loss": 0.2057,
388
+ "step": 530
389
+ },
390
+ {
391
+ "epoch": 3.1905465288035453,
392
+ "grad_norm": 0.7506650372127406,
393
+ "learning_rate": 6.553922037301283e-05,
394
+ "loss": 0.2067,
395
+ "step": 540
396
+ },
397
+ {
398
+ "epoch": 3.2496307237813884,
399
+ "grad_norm": 0.7842941173009434,
400
+ "learning_rate": 6.443082659955738e-05,
401
+ "loss": 0.1989,
402
+ "step": 550
403
+ },
404
+ {
405
+ "epoch": 3.308714918759232,
406
+ "grad_norm": 0.7593744868915973,
407
+ "learning_rate": 6.331464138074493e-05,
408
+ "loss": 0.2179,
409
+ "step": 560
410
+ },
411
+ {
412
+ "epoch": 3.3677991137370755,
413
+ "grad_norm": 0.756091123285611,
414
+ "learning_rate": 6.219126736369903e-05,
415
+ "loss": 0.2176,
416
+ "step": 570
417
+ },
418
+ {
419
+ "epoch": 3.4268833087149186,
420
+ "grad_norm": 0.7869512689224245,
421
+ "learning_rate": 6.106131107689599e-05,
422
+ "loss": 0.2215,
423
+ "step": 580
424
+ },
425
+ {
426
+ "epoch": 3.485967503692762,
427
+ "grad_norm": 0.7636724676762149,
428
+ "learning_rate": 5.9925382602689974e-05,
429
+ "loss": 0.2153,
430
+ "step": 590
431
+ },
432
+ {
433
+ "epoch": 3.5450516986706058,
434
+ "grad_norm": 0.6815318566179079,
435
+ "learning_rate": 5.8784095247919305e-05,
436
+ "loss": 0.2133,
437
+ "step": 600
438
+ },
439
+ {
440
+ "epoch": 3.604135893648449,
441
+ "grad_norm": 0.7848948829508617,
442
+ "learning_rate": 5.763806521277184e-05,
443
+ "loss": 0.2109,
444
+ "step": 610
445
+ },
446
+ {
447
+ "epoch": 3.6632200886262924,
448
+ "grad_norm": 0.7715200213470335,
449
+ "learning_rate": 5.648791125808809e-05,
450
+ "loss": 0.2214,
451
+ "step": 620
452
+ },
453
+ {
454
+ "epoch": 3.722304283604136,
455
+ "grad_norm": 0.6480973448749833,
456
+ "learning_rate": 5.5334254371281934e-05,
457
+ "loss": 0.212,
458
+ "step": 630
459
+ },
460
+ {
461
+ "epoch": 3.781388478581979,
462
+ "grad_norm": 0.6618796234383102,
463
+ "learning_rate": 5.417771743105907e-05,
464
+ "loss": 0.2196,
465
+ "step": 640
466
+ },
467
+ {
468
+ "epoch": 3.8404726735598227,
469
+ "grad_norm": 0.9462710180746308,
470
+ "learning_rate": 5.3018924871114305e-05,
471
+ "loss": 0.2145,
472
+ "step": 650
473
+ },
474
+ {
475
+ "epoch": 3.8995568685376663,
476
+ "grad_norm": 0.7674586984793125,
477
+ "learning_rate": 5.185850234298942e-05,
478
+ "loss": 0.2199,
479
+ "step": 660
480
+ },
481
+ {
482
+ "epoch": 3.9586410635155094,
483
+ "grad_norm": 0.8420752213128357,
484
+ "learning_rate": 5.0697076378273354e-05,
485
+ "loss": 0.218,
486
+ "step": 670
487
+ },
488
+ {
489
+ "epoch": 4.017725258493353,
490
+ "grad_norm": 0.6235542870137168,
491
+ "learning_rate": 4.953527405032723e-05,
492
+ "loss": 0.1987,
493
+ "step": 680
494
+ },
495
+ {
496
+ "epoch": 4.0768094534711965,
497
+ "grad_norm": 0.8247620064480204,
498
+ "learning_rate": 4.8373722635717086e-05,
499
+ "loss": 0.1425,
500
+ "step": 690
501
+ },
502
+ {
503
+ "epoch": 4.13589364844904,
504
+ "grad_norm": 0.806070554149328,
505
+ "learning_rate": 4.721304927553658e-05,
506
+ "loss": 0.1313,
507
+ "step": 700
508
+ },
509
+ {
510
+ "epoch": 4.194977843426884,
511
+ "grad_norm": 1.1960115947293068,
512
+ "learning_rate": 4.60538806368031e-05,
513
+ "loss": 0.1397,
514
+ "step": 710
515
+ },
516
+ {
517
+ "epoch": 4.254062038404727,
518
+ "grad_norm": 0.7571134276917469,
519
+ "learning_rate": 4.489684257410958e-05,
520
+ "loss": 0.1421,
521
+ "step": 720
522
+ },
523
+ {
524
+ "epoch": 4.31314623338257,
525
+ "grad_norm": 0.8865025891479803,
526
+ "learning_rate": 4.374255979171538e-05,
527
+ "loss": 0.1386,
528
+ "step": 730
529
+ },
530
+ {
531
+ "epoch": 4.372230428360414,
532
+ "grad_norm": 0.9290220213968287,
533
+ "learning_rate": 4.2591655506257645e-05,
534
+ "loss": 0.1444,
535
+ "step": 740
536
+ },
537
+ {
538
+ "epoch": 4.431314623338257,
539
+ "grad_norm": 0.8896418597603776,
540
+ "learning_rate": 4.144475111026643e-05,
541
+ "loss": 0.1391,
542
+ "step": 750
543
+ },
544
+ {
545
+ "epoch": 4.4903988183161,
546
+ "grad_norm": 0.9053211649213782,
547
+ "learning_rate": 4.030246583666437e-05,
548
+ "loss": 0.1438,
549
+ "step": 760
550
+ },
551
+ {
552
+ "epoch": 4.549483013293944,
553
+ "grad_norm": 0.8453862385052026,
554
+ "learning_rate": 3.9165416424432414e-05,
555
+ "loss": 0.1415,
556
+ "step": 770
557
+ },
558
+ {
559
+ "epoch": 4.608567208271787,
560
+ "grad_norm": 0.8724405655899441,
561
+ "learning_rate": 3.803421678562213e-05,
562
+ "loss": 0.1492,
563
+ "step": 780
564
+ },
565
+ {
566
+ "epoch": 4.66765140324963,
567
+ "grad_norm": 0.98302153579186,
568
+ "learning_rate": 3.690947767389426e-05,
569
+ "loss": 0.1512,
570
+ "step": 790
571
+ },
572
+ {
573
+ "epoch": 4.726735598227474,
574
+ "grad_norm": 0.8137008256198869,
575
+ "learning_rate": 3.57918063547627e-05,
576
+ "loss": 0.1481,
577
+ "step": 800
578
+ },
579
+ {
580
+ "epoch": 4.7858197932053175,
581
+ "grad_norm": 0.8604546990181478,
582
+ "learning_rate": 3.468180627772144e-05,
583
+ "loss": 0.1418,
584
+ "step": 810
585
+ },
586
+ {
587
+ "epoch": 4.844903988183161,
588
+ "grad_norm": 0.8028241587093687,
589
+ "learning_rate": 3.358007675043224e-05,
590
+ "loss": 0.146,
591
+ "step": 820
592
+ },
593
+ {
594
+ "epoch": 4.903988183161005,
595
+ "grad_norm": 0.8209334713352179,
596
+ "learning_rate": 3.2487212615148316e-05,
597
+ "loss": 0.1407,
598
+ "step": 830
599
+ },
600
+ {
601
+ "epoch": 4.963072378138848,
602
+ "grad_norm": 0.9318035909918932,
603
+ "learning_rate": 3.1403803927549006e-05,
604
+ "loss": 0.1502,
605
+ "step": 840
606
+ },
607
+ {
608
+ "epoch": 5.022156573116692,
609
+ "grad_norm": 0.6982555180872486,
610
+ "learning_rate": 3.0330435638158806e-05,
611
+ "loss": 0.1322,
612
+ "step": 850
613
+ },
614
+ {
615
+ "epoch": 5.081240768094535,
616
+ "grad_norm": 0.9099529668785485,
617
+ "learning_rate": 2.9267687276522876e-05,
618
+ "loss": 0.0985,
619
+ "step": 860
620
+ },
621
+ {
622
+ "epoch": 5.140324963072378,
623
+ "grad_norm": 0.8093436219539469,
624
+ "learning_rate": 2.821613263830912e-05,
625
+ "loss": 0.0929,
626
+ "step": 870
627
+ },
628
+ {
629
+ "epoch": 5.199409158050222,
630
+ "grad_norm": 0.908675419764728,
631
+ "learning_rate": 2.717633947550651e-05,
632
+ "loss": 0.0941,
633
+ "step": 880
634
+ },
635
+ {
636
+ "epoch": 5.258493353028065,
637
+ "grad_norm": 0.9144782506889362,
638
+ "learning_rate": 2.614886918988604e-05,
639
+ "loss": 0.0951,
640
+ "step": 890
641
+ },
642
+ {
643
+ "epoch": 5.317577548005908,
644
+ "grad_norm": 0.8302439773379418,
645
+ "learning_rate": 2.5134276529890644e-05,
646
+ "loss": 0.0926,
647
+ "step": 900
648
+ },
649
+ {
650
+ "epoch": 5.376661742983752,
651
+ "grad_norm": 0.8145999759475107,
652
+ "learning_rate": 2.4133109291117156e-05,
653
+ "loss": 0.095,
654
+ "step": 910
655
+ },
656
+ {
657
+ "epoch": 5.435745937961595,
658
+ "grad_norm": 0.7459552675334057,
659
+ "learning_rate": 2.314590802055232e-05,
660
+ "loss": 0.0886,
661
+ "step": 920
662
+ },
663
+ {
664
+ "epoch": 5.4948301329394384,
665
+ "grad_norm": 0.9033419203896008,
666
+ "learning_rate": 2.2173205724722318e-05,
667
+ "loss": 0.096,
668
+ "step": 930
669
+ },
670
+ {
671
+ "epoch": 5.5539143279172825,
672
+ "grad_norm": 0.882377183289936,
673
+ "learning_rate": 2.121552758191366e-05,
674
+ "loss": 0.0962,
675
+ "step": 940
676
+ },
677
+ {
678
+ "epoch": 5.612998522895126,
679
+ "grad_norm": 0.8033415953079253,
680
+ "learning_rate": 2.027339065862064e-05,
681
+ "loss": 0.0985,
682
+ "step": 950
683
+ },
684
+ {
685
+ "epoch": 5.672082717872969,
686
+ "grad_norm": 0.9269892443045443,
687
+ "learning_rate": 1.934730363037237e-05,
688
+ "loss": 0.0939,
689
+ "step": 960
690
+ },
691
+ {
692
+ "epoch": 5.731166912850813,
693
+ "grad_norm": 0.8483635995759108,
694
+ "learning_rate": 1.843776650709046e-05,
695
+ "loss": 0.0975,
696
+ "step": 970
697
+ },
698
+ {
699
+ "epoch": 5.790251107828656,
700
+ "grad_norm": 0.7664349269568396,
701
+ "learning_rate": 1.7545270363125153e-05,
702
+ "loss": 0.093,
703
+ "step": 980
704
+ },
705
+ {
706
+ "epoch": 5.849335302806499,
707
+ "grad_norm": 0.7270945706246518,
708
+ "learning_rate": 1.6670297072116165e-05,
709
+ "loss": 0.0959,
710
+ "step": 990
711
+ },
712
+ {
713
+ "epoch": 5.908419497784343,
714
+ "grad_norm": 0.4763779090409354,
715
+ "learning_rate": 1.581331904682089e-05,
716
+ "loss": 0.0918,
717
+ "step": 1000
718
+ },
719
+ {
720
+ "epoch": 5.908419497784343,
721
+ "eval_loss": 0.7311862707138062,
722
+ "eval_runtime": 52.641,
723
+ "eval_samples_per_second": 2.109,
724
+ "eval_steps_per_second": 0.532,
725
+ "step": 1000
726
+ }
727
+ ],
728
+ "logging_steps": 10,
729
+ "max_steps": 1352,
730
+ "num_input_tokens_seen": 0,
731
+ "num_train_epochs": 8,
732
+ "save_steps": 1000,
733
+ "stateful_callbacks": {
734
+ "TrainerControl": {
735
+ "args": {
736
+ "should_epoch_stop": false,
737
+ "should_evaluate": false,
738
+ "should_log": false,
739
+ "should_save": true,
740
+ "should_training_stop": false
741
+ },
742
+ "attributes": {}
743
+ }
744
+ },
745
+ "total_flos": 1062799032713216.0,
746
+ "train_batch_size": 2,
747
+ "trial_name": null,
748
+ "trial_params": null
749
+ }
checkpoint-1000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:899f0486eced747a2f123ddafb9d6fecbc5fefa74f8054cc454aa966f7165bc2
3
+ size 6968
checkpoint-1000/zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
eval_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 7.988183161004431,
3
+ "eval_loss": 0.8734431862831116,
4
+ "eval_runtime": 52.5704,
5
+ "eval_samples_per_second": 2.111,
6
+ "eval_steps_per_second": 0.533
7
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{{ '<s>' + system_message }}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ ' [INST] ' + content + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ content + '</s>' }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": false,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "padding_side": "right",
39
+ "sp_model_kwargs": {},
40
+ "spaces_between_special_tokens": false,
41
+ "split_special_tokens": false,
42
+ "tokenizer_class": "LlamaTokenizer",
43
+ "unk_token": "<unk>",
44
+ "use_default_system_prompt": false
45
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 7.988183161004431,
3
+ "total_flos": 1435586865135616.0,
4
+ "train_loss": 0.22072081432606167,
5
+ "train_runtime": 22818.9262,
6
+ "train_samples_per_second": 1.896,
7
+ "train_steps_per_second": 0.059
8
+ }
trainer_log.jsonl ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"current_steps": 10, "total_steps": 1352, "loss": 0.6972, "learning_rate": 9.998650208062712e-05, "epoch": 0.059084194977843424, "percentage": 0.74, "elapsed_time": "0:02:55", "remaining_time": "6:31:38"}
2
+ {"current_steps": 20, "total_steps": 1352, "loss": 0.5423, "learning_rate": 9.994601561026155e-05, "epoch": 0.11816838995568685, "percentage": 1.48, "elapsed_time": "0:05:43", "remaining_time": "6:21:30"}
3
+ {"current_steps": 30, "total_steps": 1352, "loss": 0.5149, "learning_rate": 9.98785624482278e-05, "epoch": 0.17725258493353027, "percentage": 2.22, "elapsed_time": "0:08:36", "remaining_time": "6:18:58"}
4
+ {"current_steps": 40, "total_steps": 1352, "loss": 0.513, "learning_rate": 9.978417901361958e-05, "epoch": 0.2363367799113737, "percentage": 2.96, "elapsed_time": "0:11:26", "remaining_time": "6:15:08"}
5
+ {"current_steps": 50, "total_steps": 1352, "loss": 0.4957, "learning_rate": 9.96629162656365e-05, "epoch": 0.29542097488921715, "percentage": 3.7, "elapsed_time": "0:14:14", "remaining_time": "6:10:46"}
6
+ {"current_steps": 60, "total_steps": 1352, "loss": 0.495, "learning_rate": 9.951483967607041e-05, "epoch": 0.35450516986706054, "percentage": 4.44, "elapsed_time": "0:17:01", "remaining_time": "6:06:31"}
7
+ {"current_steps": 70, "total_steps": 1352, "loss": 0.4943, "learning_rate": 9.934002919395592e-05, "epoch": 0.413589364844904, "percentage": 5.18, "elapsed_time": "0:19:47", "remaining_time": "6:02:28"}
8
+ {"current_steps": 80, "total_steps": 1352, "loss": 0.4738, "learning_rate": 9.91385792024048e-05, "epoch": 0.4726735598227474, "percentage": 5.92, "elapsed_time": "0:22:37", "remaining_time": "5:59:41"}
9
+ {"current_steps": 90, "total_steps": 1352, "loss": 0.4565, "learning_rate": 9.891059846764679e-05, "epoch": 0.5317577548005908, "percentage": 6.66, "elapsed_time": "0:25:27", "remaining_time": "5:56:54"}
10
+ {"current_steps": 100, "total_steps": 1352, "loss": 0.4674, "learning_rate": 9.865621008030492e-05, "epoch": 0.5908419497784343, "percentage": 7.4, "elapsed_time": "0:28:13", "remaining_time": "5:53:22"}
11
+ {"current_steps": 110, "total_steps": 1352, "loss": 0.4727, "learning_rate": 9.83755513889369e-05, "epoch": 0.6499261447562777, "percentage": 8.14, "elapsed_time": "0:31:02", "remaining_time": "5:50:31"}
12
+ {"current_steps": 120, "total_steps": 1352, "loss": 0.4736, "learning_rate": 9.80687739258782e-05, "epoch": 0.7090103397341211, "percentage": 8.88, "elapsed_time": "0:33:49", "remaining_time": "5:47:18"}
13
+ {"current_steps": 130, "total_steps": 1352, "loss": 0.47, "learning_rate": 9.773604332542729e-05, "epoch": 0.7680945347119645, "percentage": 9.62, "elapsed_time": "0:36:36", "remaining_time": "5:44:02"}
14
+ {"current_steps": 140, "total_steps": 1352, "loss": 0.467, "learning_rate": 9.737753923441688e-05, "epoch": 0.827178729689808, "percentage": 10.36, "elapsed_time": "0:39:26", "remaining_time": "5:41:26"}
15
+ {"current_steps": 150, "total_steps": 1352, "loss": 0.4522, "learning_rate": 9.69934552152196e-05, "epoch": 0.8862629246676514, "percentage": 11.09, "elapsed_time": "0:42:15", "remaining_time": "5:38:37"}
16
+ {"current_steps": 160, "total_steps": 1352, "loss": 0.4613, "learning_rate": 9.658399864124037e-05, "epoch": 0.9453471196454948, "percentage": 11.83, "elapsed_time": "0:45:01", "remaining_time": "5:35:24"}
17
+ {"current_steps": 170, "total_steps": 1352, "loss": 0.4641, "learning_rate": 9.61493905849521e-05, "epoch": 1.0044313146233383, "percentage": 12.57, "elapsed_time": "0:47:48", "remaining_time": "5:32:25"}
18
+ {"current_steps": 180, "total_steps": 1352, "loss": 0.3946, "learning_rate": 9.568986569853487e-05, "epoch": 1.0635155096011817, "percentage": 13.31, "elapsed_time": "0:50:42", "remaining_time": "5:30:07"}
19
+ {"current_steps": 190, "total_steps": 1352, "loss": 0.3882, "learning_rate": 9.520567208718337e-05, "epoch": 1.122599704579025, "percentage": 14.05, "elapsed_time": "0:53:31", "remaining_time": "5:27:20"}
20
+ {"current_steps": 200, "total_steps": 1352, "loss": 0.4205, "learning_rate": 9.469707117515067e-05, "epoch": 1.1816838995568686, "percentage": 14.79, "elapsed_time": "0:56:16", "remaining_time": "5:24:07"}
21
+ {"current_steps": 210, "total_steps": 1352, "loss": 0.386, "learning_rate": 9.416433756460091e-05, "epoch": 1.240768094534712, "percentage": 15.53, "elapsed_time": "0:59:03", "remaining_time": "5:21:09"}
22
+ {"current_steps": 220, "total_steps": 1352, "loss": 0.4096, "learning_rate": 9.360775888734698e-05, "epoch": 1.2998522895125553, "percentage": 16.27, "elapsed_time": "1:01:50", "remaining_time": "5:18:10"}
23
+ {"current_steps": 230, "total_steps": 1352, "loss": 0.3921, "learning_rate": 9.302763564955331e-05, "epoch": 1.3589364844903988, "percentage": 17.01, "elapsed_time": "1:04:39", "remaining_time": "5:15:23"}
24
+ {"current_steps": 240, "total_steps": 1352, "loss": 0.3788, "learning_rate": 9.242428106948749e-05, "epoch": 1.4180206794682422, "percentage": 17.75, "elapsed_time": "1:07:30", "remaining_time": "5:12:45"}
25
+ {"current_steps": 250, "total_steps": 1352, "loss": 0.3894, "learning_rate": 9.179802090840853e-05, "epoch": 1.4771048744460857, "percentage": 18.49, "elapsed_time": "1:10:19", "remaining_time": "5:09:59"}
26
+ {"current_steps": 260, "total_steps": 1352, "loss": 0.3707, "learning_rate": 9.114919329468282e-05, "epoch": 1.536189069423929, "percentage": 19.23, "elapsed_time": "1:13:12", "remaining_time": "5:07:27"}
27
+ {"current_steps": 270, "total_steps": 1352, "loss": 0.3938, "learning_rate": 9.04781485412231e-05, "epoch": 1.5952732644017726, "percentage": 19.97, "elapsed_time": "1:15:55", "remaining_time": "5:04:16"}
28
+ {"current_steps": 280, "total_steps": 1352, "loss": 0.3799, "learning_rate": 8.978524895634842e-05, "epoch": 1.654357459379616, "percentage": 20.71, "elapsed_time": "1:18:46", "remaining_time": "5:01:35"}
29
+ {"current_steps": 290, "total_steps": 1352, "loss": 0.403, "learning_rate": 8.907086864816803e-05, "epoch": 1.7134416543574593, "percentage": 21.45, "elapsed_time": "1:21:33", "remaining_time": "4:58:40"}
30
+ {"current_steps": 300, "total_steps": 1352, "loss": 0.3758, "learning_rate": 8.833539332259398e-05, "epoch": 1.7725258493353029, "percentage": 22.19, "elapsed_time": "1:24:28", "remaining_time": "4:56:12"}
31
+ {"current_steps": 310, "total_steps": 1352, "loss": 0.3963, "learning_rate": 8.757922007509207e-05, "epoch": 1.8316100443131462, "percentage": 22.93, "elapsed_time": "1:27:16", "remaining_time": "4:53:23"}
32
+ {"current_steps": 320, "total_steps": 1352, "loss": 0.3858, "learning_rate": 8.680275717628337e-05, "epoch": 1.8906942392909896, "percentage": 23.67, "elapsed_time": "1:30:06", "remaining_time": "4:50:35"}
33
+ {"current_steps": 330, "total_steps": 1352, "loss": 0.3799, "learning_rate": 8.600642385151205e-05, "epoch": 1.9497784342688331, "percentage": 24.41, "elapsed_time": "1:32:52", "remaining_time": "4:47:37"}
34
+ {"current_steps": 340, "total_steps": 1352, "loss": 0.3763, "learning_rate": 8.519065005449858e-05, "epoch": 2.0088626292466767, "percentage": 25.15, "elapsed_time": "1:35:37", "remaining_time": "4:44:37"}
35
+ {"current_steps": 350, "total_steps": 1352, "loss": 0.2934, "learning_rate": 8.43558762352005e-05, "epoch": 2.06794682422452, "percentage": 25.89, "elapsed_time": "1:38:32", "remaining_time": "4:42:05"}
36
+ {"current_steps": 360, "total_steps": 1352, "loss": 0.3078, "learning_rate": 8.350255310200612e-05, "epoch": 2.1270310192023634, "percentage": 26.63, "elapsed_time": "1:41:15", "remaining_time": "4:39:01"}
37
+ {"current_steps": 370, "total_steps": 1352, "loss": 0.3028, "learning_rate": 8.263114137838947e-05, "epoch": 2.186115214180207, "percentage": 27.37, "elapsed_time": "1:44:01", "remaining_time": "4:36:06"}
38
+ {"current_steps": 380, "total_steps": 1352, "loss": 0.2972, "learning_rate": 8.174211155415799e-05, "epoch": 2.24519940915805, "percentage": 28.11, "elapsed_time": "1:46:47", "remaining_time": "4:33:09"}
39
+ {"current_steps": 390, "total_steps": 1352, "loss": 0.2995, "learning_rate": 8.083594363142717e-05, "epoch": 2.3042836041358936, "percentage": 28.85, "elapsed_time": "1:49:35", "remaining_time": "4:30:18"}
40
+ {"current_steps": 400, "total_steps": 1352, "loss": 0.2963, "learning_rate": 7.991312686545937e-05, "epoch": 2.363367799113737, "percentage": 29.59, "elapsed_time": "1:52:24", "remaining_time": "4:27:32"}
41
+ {"current_steps": 410, "total_steps": 1352, "loss": 0.2987, "learning_rate": 7.897415950050676e-05, "epoch": 2.4224519940915803, "percentage": 30.33, "elapsed_time": "1:55:12", "remaining_time": "4:24:40"}
42
+ {"current_steps": 420, "total_steps": 1352, "loss": 0.3092, "learning_rate": 7.801954850080075e-05, "epoch": 2.481536189069424, "percentage": 31.07, "elapsed_time": "1:57:55", "remaining_time": "4:21:41"}
43
+ {"current_steps": 430, "total_steps": 1352, "loss": 0.2951, "learning_rate": 7.704980927683359e-05, "epoch": 2.5406203840472674, "percentage": 31.8, "elapsed_time": "2:00:50", "remaining_time": "4:19:05"}
44
+ {"current_steps": 440, "total_steps": 1352, "loss": 0.3097, "learning_rate": 7.60654654070796e-05, "epoch": 2.5997045790251105, "percentage": 32.54, "elapsed_time": "2:03:35", "remaining_time": "4:16:10"}
45
+ {"current_steps": 450, "total_steps": 1352, "loss": 0.2999, "learning_rate": 7.506704835530634e-05, "epoch": 2.658788774002954, "percentage": 33.28, "elapsed_time": "2:06:27", "remaining_time": "4:13:28"}
46
+ {"current_steps": 460, "total_steps": 1352, "loss": 0.2905, "learning_rate": 7.405509718362842e-05, "epoch": 2.7178729689807977, "percentage": 34.02, "elapsed_time": "2:09:15", "remaining_time": "4:10:37"}
47
+ {"current_steps": 470, "total_steps": 1352, "loss": 0.309, "learning_rate": 7.303015826145885e-05, "epoch": 2.7769571639586412, "percentage": 34.76, "elapsed_time": "2:12:01", "remaining_time": "4:07:45"}
48
+ {"current_steps": 480, "total_steps": 1352, "loss": 0.302, "learning_rate": 7.199278497051498e-05, "epoch": 2.8360413589364843, "percentage": 35.5, "elapsed_time": "2:14:51", "remaining_time": "4:05:00"}
49
+ {"current_steps": 490, "total_steps": 1352, "loss": 0.297, "learning_rate": 7.094353740603839e-05, "epoch": 2.895125553914328, "percentage": 36.24, "elapsed_time": "2:17:38", "remaining_time": "4:02:07"}
50
+ {"current_steps": 500, "total_steps": 1352, "loss": 0.3101, "learning_rate": 6.988298207439021e-05, "epoch": 2.9542097488921715, "percentage": 36.98, "elapsed_time": "2:20:26", "remaining_time": "3:59:18"}
51
+ {"current_steps": 500, "total_steps": 1352, "eval_loss": 0.4939613938331604, "epoch": 2.9542097488921715, "percentage": 36.98, "elapsed_time": "2:21:20", "remaining_time": "4:00:49"}
52
+ {"current_steps": 510, "total_steps": 1352, "loss": 0.2736, "learning_rate": 6.881169158718474e-05, "epoch": 3.0132939438700146, "percentage": 37.72, "elapsed_time": "2:24:11", "remaining_time": "3:58:03"}
53
+ {"current_steps": 520, "total_steps": 1352, "loss": 0.2187, "learning_rate": 6.773024435212678e-05, "epoch": 3.072378138847858, "percentage": 38.46, "elapsed_time": "2:26:58", "remaining_time": "3:55:10"}
54
+ {"current_steps": 530, "total_steps": 1352, "loss": 0.2057, "learning_rate": 6.663922426071977e-05, "epoch": 3.1314623338257017, "percentage": 39.2, "elapsed_time": "2:29:45", "remaining_time": "3:52:15"}
55
+ {"current_steps": 540, "total_steps": 1352, "loss": 0.2067, "learning_rate": 6.553922037301283e-05, "epoch": 3.1905465288035453, "percentage": 39.94, "elapsed_time": "2:32:39", "remaining_time": "3:49:32"}
56
+ {"current_steps": 550, "total_steps": 1352, "loss": 0.1989, "learning_rate": 6.443082659955738e-05, "epoch": 3.2496307237813884, "percentage": 40.68, "elapsed_time": "2:35:33", "remaining_time": "3:46:49"}
57
+ {"current_steps": 560, "total_steps": 1352, "loss": 0.2179, "learning_rate": 6.331464138074493e-05, "epoch": 3.308714918759232, "percentage": 41.42, "elapsed_time": "2:38:17", "remaining_time": "3:43:52"}
58
+ {"current_steps": 570, "total_steps": 1352, "loss": 0.2176, "learning_rate": 6.219126736369903e-05, "epoch": 3.3677991137370755, "percentage": 42.16, "elapsed_time": "2:41:06", "remaining_time": "3:41:01"}
59
+ {"current_steps": 580, "total_steps": 1352, "loss": 0.2215, "learning_rate": 6.106131107689599e-05, "epoch": 3.4268833087149186, "percentage": 42.9, "elapsed_time": "2:43:52", "remaining_time": "3:38:06"}
60
+ {"current_steps": 590, "total_steps": 1352, "loss": 0.2153, "learning_rate": 5.9925382602689974e-05, "epoch": 3.485967503692762, "percentage": 43.64, "elapsed_time": "2:46:38", "remaining_time": "3:35:13"}
61
+ {"current_steps": 600, "total_steps": 1352, "loss": 0.2133, "learning_rate": 5.8784095247919305e-05, "epoch": 3.5450516986706058, "percentage": 44.38, "elapsed_time": "2:49:26", "remaining_time": "3:32:21"}
62
+ {"current_steps": 610, "total_steps": 1352, "loss": 0.2109, "learning_rate": 5.763806521277184e-05, "epoch": 3.604135893648449, "percentage": 45.12, "elapsed_time": "2:52:16", "remaining_time": "3:29:32"}
63
+ {"current_steps": 620, "total_steps": 1352, "loss": 0.2214, "learning_rate": 5.648791125808809e-05, "epoch": 3.6632200886262924, "percentage": 45.86, "elapsed_time": "2:55:02", "remaining_time": "3:26:39"}
64
+ {"current_steps": 630, "total_steps": 1352, "loss": 0.212, "learning_rate": 5.5334254371281934e-05, "epoch": 3.722304283604136, "percentage": 46.6, "elapsed_time": "2:57:52", "remaining_time": "3:23:51"}
65
+ {"current_steps": 640, "total_steps": 1352, "loss": 0.2196, "learning_rate": 5.417771743105907e-05, "epoch": 3.781388478581979, "percentage": 47.34, "elapsed_time": "3:00:45", "remaining_time": "3:21:05"}
66
+ {"current_steps": 650, "total_steps": 1352, "loss": 0.2145, "learning_rate": 5.3018924871114305e-05, "epoch": 3.8404726735598227, "percentage": 48.08, "elapsed_time": "3:03:33", "remaining_time": "3:18:14"}
67
+ {"current_steps": 660, "total_steps": 1352, "loss": 0.2199, "learning_rate": 5.185850234298942e-05, "epoch": 3.8995568685376663, "percentage": 48.82, "elapsed_time": "3:06:17", "remaining_time": "3:15:19"}
68
+ {"current_steps": 670, "total_steps": 1352, "loss": 0.218, "learning_rate": 5.0697076378273354e-05, "epoch": 3.9586410635155094, "percentage": 49.56, "elapsed_time": "3:09:04", "remaining_time": "3:12:27"}
69
+ {"current_steps": 680, "total_steps": 1352, "loss": 0.1987, "learning_rate": 4.953527405032723e-05, "epoch": 4.017725258493353, "percentage": 50.3, "elapsed_time": "3:11:51", "remaining_time": "3:09:35"}
70
+ {"current_steps": 690, "total_steps": 1352, "loss": 0.1425, "learning_rate": 4.8373722635717086e-05, "epoch": 4.0768094534711965, "percentage": 51.04, "elapsed_time": "3:14:39", "remaining_time": "3:06:45"}
71
+ {"current_steps": 700, "total_steps": 1352, "loss": 0.1313, "learning_rate": 4.721304927553658e-05, "epoch": 4.13589364844904, "percentage": 51.78, "elapsed_time": "3:17:26", "remaining_time": "3:03:53"}
72
+ {"current_steps": 710, "total_steps": 1352, "loss": 0.1397, "learning_rate": 4.60538806368031e-05, "epoch": 4.194977843426884, "percentage": 52.51, "elapsed_time": "3:20:11", "remaining_time": "3:01:01"}
73
+ {"current_steps": 720, "total_steps": 1352, "loss": 0.1421, "learning_rate": 4.489684257410958e-05, "epoch": 4.254062038404727, "percentage": 53.25, "elapsed_time": "3:22:58", "remaining_time": "2:58:09"}
74
+ {"current_steps": 730, "total_steps": 1352, "loss": 0.1386, "learning_rate": 4.374255979171538e-05, "epoch": 4.31314623338257, "percentage": 53.99, "elapsed_time": "3:25:45", "remaining_time": "2:55:19"}
75
+ {"current_steps": 740, "total_steps": 1352, "loss": 0.1444, "learning_rate": 4.2591655506257645e-05, "epoch": 4.372230428360414, "percentage": 54.73, "elapsed_time": "3:28:35", "remaining_time": "2:52:30"}
76
+ {"current_steps": 750, "total_steps": 1352, "loss": 0.1391, "learning_rate": 4.144475111026643e-05, "epoch": 4.431314623338257, "percentage": 55.47, "elapsed_time": "3:31:25", "remaining_time": "2:49:42"}
77
+ {"current_steps": 760, "total_steps": 1352, "loss": 0.1438, "learning_rate": 4.030246583666437e-05, "epoch": 4.4903988183161, "percentage": 56.21, "elapsed_time": "3:34:15", "remaining_time": "2:46:53"}
78
+ {"current_steps": 770, "total_steps": 1352, "loss": 0.1415, "learning_rate": 3.9165416424432414e-05, "epoch": 4.549483013293944, "percentage": 56.95, "elapsed_time": "3:37:04", "remaining_time": "2:44:04"}
79
+ {"current_steps": 780, "total_steps": 1352, "loss": 0.1492, "learning_rate": 3.803421678562213e-05, "epoch": 4.608567208271787, "percentage": 57.69, "elapsed_time": "3:39:52", "remaining_time": "2:41:14"}
80
+ {"current_steps": 790, "total_steps": 1352, "loss": 0.1512, "learning_rate": 3.690947767389426e-05, "epoch": 4.66765140324963, "percentage": 58.43, "elapsed_time": "3:42:44", "remaining_time": "2:38:27"}
81
+ {"current_steps": 800, "total_steps": 1352, "loss": 0.1481, "learning_rate": 3.57918063547627e-05, "epoch": 4.726735598227474, "percentage": 59.17, "elapsed_time": "3:45:31", "remaining_time": "2:35:36"}
82
+ {"current_steps": 810, "total_steps": 1352, "loss": 0.1418, "learning_rate": 3.468180627772144e-05, "epoch": 4.7858197932053175, "percentage": 59.91, "elapsed_time": "3:48:15", "remaining_time": "2:32:44"}
83
+ {"current_steps": 820, "total_steps": 1352, "loss": 0.146, "learning_rate": 3.358007675043224e-05, "epoch": 4.844903988183161, "percentage": 60.65, "elapsed_time": "3:51:03", "remaining_time": "2:29:54"}
84
+ {"current_steps": 830, "total_steps": 1352, "loss": 0.1407, "learning_rate": 3.2487212615148316e-05, "epoch": 4.903988183161005, "percentage": 61.39, "elapsed_time": "3:53:49", "remaining_time": "2:27:03"}
85
+ {"current_steps": 840, "total_steps": 1352, "loss": 0.1502, "learning_rate": 3.1403803927549006e-05, "epoch": 4.963072378138848, "percentage": 62.13, "elapsed_time": "3:56:38", "remaining_time": "2:24:14"}
86
+ {"current_steps": 850, "total_steps": 1352, "loss": 0.1322, "learning_rate": 3.0330435638158806e-05, "epoch": 5.022156573116692, "percentage": 62.87, "elapsed_time": "3:59:24", "remaining_time": "2:21:23"}
87
+ {"current_steps": 860, "total_steps": 1352, "loss": 0.0985, "learning_rate": 2.9267687276522876e-05, "epoch": 5.081240768094535, "percentage": 63.61, "elapsed_time": "4:02:13", "remaining_time": "2:18:34"}
88
+ {"current_steps": 870, "total_steps": 1352, "loss": 0.0929, "learning_rate": 2.821613263830912e-05, "epoch": 5.140324963072378, "percentage": 64.35, "elapsed_time": "4:05:03", "remaining_time": "2:15:46"}
89
+ {"current_steps": 880, "total_steps": 1352, "loss": 0.0941, "learning_rate": 2.717633947550651e-05, "epoch": 5.199409158050222, "percentage": 65.09, "elapsed_time": "4:07:51", "remaining_time": "2:12:56"}
90
+ {"current_steps": 890, "total_steps": 1352, "loss": 0.0951, "learning_rate": 2.614886918988604e-05, "epoch": 5.258493353028065, "percentage": 65.83, "elapsed_time": "4:10:38", "remaining_time": "2:10:06"}
91
+ {"current_steps": 900, "total_steps": 1352, "loss": 0.0926, "learning_rate": 2.5134276529890644e-05, "epoch": 5.317577548005908, "percentage": 66.57, "elapsed_time": "4:13:26", "remaining_time": "2:07:17"}
92
+ {"current_steps": 910, "total_steps": 1352, "loss": 0.095, "learning_rate": 2.4133109291117156e-05, "epoch": 5.376661742983752, "percentage": 67.31, "elapsed_time": "4:16:14", "remaining_time": "2:04:27"}
93
+ {"current_steps": 920, "total_steps": 1352, "loss": 0.0886, "learning_rate": 2.314590802055232e-05, "epoch": 5.435745937961595, "percentage": 68.05, "elapsed_time": "4:18:58", "remaining_time": "2:01:36"}
94
+ {"current_steps": 930, "total_steps": 1352, "loss": 0.096, "learning_rate": 2.2173205724722318e-05, "epoch": 5.4948301329394384, "percentage": 68.79, "elapsed_time": "4:21:47", "remaining_time": "1:58:47"}
95
+ {"current_steps": 940, "total_steps": 1352, "loss": 0.0962, "learning_rate": 2.121552758191366e-05, "epoch": 5.5539143279172825, "percentage": 69.53, "elapsed_time": "4:24:31", "remaining_time": "1:55:56"}
96
+ {"current_steps": 950, "total_steps": 1352, "loss": 0.0985, "learning_rate": 2.027339065862064e-05, "epoch": 5.612998522895126, "percentage": 70.27, "elapsed_time": "4:27:16", "remaining_time": "1:53:05"}
97
+ {"current_steps": 960, "total_steps": 1352, "loss": 0.0939, "learning_rate": 1.934730363037237e-05, "epoch": 5.672082717872969, "percentage": 71.01, "elapsed_time": "4:30:02", "remaining_time": "1:50:16"}
98
+ {"current_steps": 970, "total_steps": 1352, "loss": 0.0975, "learning_rate": 1.843776650709046e-05, "epoch": 5.731166912850813, "percentage": 71.75, "elapsed_time": "4:32:47", "remaining_time": "1:47:25"}
99
+ {"current_steps": 980, "total_steps": 1352, "loss": 0.093, "learning_rate": 1.7545270363125153e-05, "epoch": 5.790251107828656, "percentage": 72.49, "elapsed_time": "4:35:33", "remaining_time": "1:44:35"}
100
+ {"current_steps": 990, "total_steps": 1352, "loss": 0.0959, "learning_rate": 1.6670297072116165e-05, "epoch": 5.849335302806499, "percentage": 73.22, "elapsed_time": "4:38:25", "remaining_time": "1:41:48"}
101
+ {"current_steps": 1000, "total_steps": 1352, "loss": 0.0918, "learning_rate": 1.581331904682089e-05, "epoch": 5.908419497784343, "percentage": 73.96, "elapsed_time": "4:41:09", "remaining_time": "1:38:58"}
102
+ {"current_steps": 1000, "total_steps": 1352, "eval_loss": 0.7311862707138062, "epoch": 5.908419497784343, "percentage": 73.96, "elapsed_time": "4:42:02", "remaining_time": "1:39:16"}
103
+ {"current_steps": 1010, "total_steps": 1352, "loss": 0.0933, "learning_rate": 1.4974798984050942e-05, "epoch": 5.967503692762186, "percentage": 74.7, "elapsed_time": "4:45:04", "remaining_time": "1:36:31"}
104
+ {"current_steps": 1020, "total_steps": 1352, "loss": 0.0828, "learning_rate": 1.4155189614854275e-05, "epoch": 6.026587887740029, "percentage": 75.44, "elapsed_time": "4:47:52", "remaining_time": "1:33:41"}
105
+ {"current_steps": 1030, "total_steps": 1352, "loss": 0.0678, "learning_rate": 1.3354933460078217e-05, "epoch": 6.085672082717873, "percentage": 76.18, "elapsed_time": "4:50:41", "remaining_time": "1:30:52"}
106
+ {"current_steps": 1040, "total_steps": 1352, "loss": 0.0629, "learning_rate": 1.257446259144494e-05, "epoch": 6.144756277695716, "percentage": 76.92, "elapsed_time": "4:53:27", "remaining_time": "1:28:02"}
107
+ {"current_steps": 1050, "total_steps": 1352, "loss": 0.0697, "learning_rate": 1.1814198398268794e-05, "epoch": 6.203840472673559, "percentage": 77.66, "elapsed_time": "4:56:13", "remaining_time": "1:25:12"}
108
+ {"current_steps": 1060, "total_steps": 1352, "loss": 0.0644, "learning_rate": 1.1074551359941021e-05, "epoch": 6.262924667651403, "percentage": 78.4, "elapsed_time": "4:59:01", "remaining_time": "1:22:22"}
109
+ {"current_steps": 1070, "total_steps": 1352, "loss": 0.069, "learning_rate": 1.0355920824305127e-05, "epoch": 6.3220088626292466, "percentage": 79.14, "elapsed_time": "5:01:54", "remaining_time": "1:19:34"}
110
+ {"current_steps": 1080, "total_steps": 1352, "loss": 0.0666, "learning_rate": 9.658694792042284e-06, "epoch": 6.381093057607091, "percentage": 79.88, "elapsed_time": "5:04:41", "remaining_time": "1:16:44"}
111
+ {"current_steps": 1090, "total_steps": 1352, "loss": 0.0679, "learning_rate": 8.98324970718319e-06, "epoch": 6.440177252584934, "percentage": 80.62, "elapsed_time": "5:07:30", "remaining_time": "1:13:54"}
112
+ {"current_steps": 1100, "total_steps": 1352, "loss": 0.0656, "learning_rate": 8.329950253859703e-06, "epoch": 6.499261447562777, "percentage": 81.36, "elapsed_time": "5:10:14", "remaining_time": "1:11:04"}
113
+ {"current_steps": 1110, "total_steps": 1352, "loss": 0.0664, "learning_rate": 7.699149159405734e-06, "epoch": 6.558345642540621, "percentage": 82.1, "elapsed_time": "5:13:04", "remaining_time": "1:08:15"}
114
+ {"current_steps": 1120, "total_steps": 1352, "loss": 0.0673, "learning_rate": 7.0911870039138015e-06, "epoch": 6.617429837518464, "percentage": 82.84, "elapsed_time": "5:15:53", "remaining_time": "1:05:26"}
115
+ {"current_steps": 1130, "total_steps": 1352, "loss": 0.0697, "learning_rate": 6.506392036350167e-06, "epoch": 6.676514032496307, "percentage": 83.58, "elapsed_time": "5:18:38", "remaining_time": "1:02:36"}
116
+ {"current_steps": 1140, "total_steps": 1352, "loss": 0.0669, "learning_rate": 5.945079997327713e-06, "epoch": 6.735598227474151, "percentage": 84.32, "elapsed_time": "5:21:24", "remaining_time": "0:59:46"}
117
+ {"current_steps": 1150, "total_steps": 1352, "loss": 0.0683, "learning_rate": 5.407553948632277e-06, "epoch": 6.794682422451994, "percentage": 85.06, "elapsed_time": "5:24:09", "remaining_time": "0:56:56"}
118
+ {"current_steps": 1160, "total_steps": 1352, "loss": 0.0684, "learning_rate": 4.894104109594466e-06, "epoch": 6.853766617429837, "percentage": 85.8, "elapsed_time": "5:26:58", "remaining_time": "0:54:07"}
119
+ {"current_steps": 1170, "total_steps": 1352, "loss": 0.0687, "learning_rate": 4.405007700395497e-06, "epoch": 6.912850812407681, "percentage": 86.54, "elapsed_time": "5:29:44", "remaining_time": "0:51:17"}
120
+ {"current_steps": 1180, "total_steps": 1352, "loss": 0.0721, "learning_rate": 3.940528792391223e-06, "epoch": 6.971935007385524, "percentage": 87.28, "elapsed_time": "5:32:25", "remaining_time": "0:48:27"}
121
+ {"current_steps": 1190, "total_steps": 1352, "loss": 0.0653, "learning_rate": 3.5009181655356826e-06, "epoch": 7.0310192023633675, "percentage": 88.02, "elapsed_time": "5:35:13", "remaining_time": "0:45:38"}
122
+ {"current_steps": 1200, "total_steps": 1352, "loss": 0.0579, "learning_rate": 3.0864131729807398e-06, "epoch": 7.0901033973412115, "percentage": 88.76, "elapsed_time": "5:38:03", "remaining_time": "0:42:49"}
123
+ {"current_steps": 1210, "total_steps": 1352, "loss": 0.0585, "learning_rate": 2.6972376129251686e-06, "epoch": 7.149187592319055, "percentage": 89.5, "elapsed_time": "5:40:48", "remaining_time": "0:39:59"}
124
+ {"current_steps": 1220, "total_steps": 1352, "loss": 0.0562, "learning_rate": 2.3336016077822154e-06, "epoch": 7.208271787296898, "percentage": 90.24, "elapsed_time": "5:43:37", "remaining_time": "0:37:10"}
125
+ {"current_steps": 1230, "total_steps": 1352, "loss": 0.0572, "learning_rate": 1.9957014907310224e-06, "epoch": 7.267355982274742, "percentage": 90.98, "elapsed_time": "5:46:23", "remaining_time": "0:34:21"}
126
+ {"current_steps": 1240, "total_steps": 1352, "loss": 0.06, "learning_rate": 1.6837196997130434e-06, "epoch": 7.326440177252585, "percentage": 91.72, "elapsed_time": "5:49:09", "remaining_time": "0:31:32"}
127
+ {"current_steps": 1250, "total_steps": 1352, "loss": 0.0565, "learning_rate": 1.3978246789307149e-06, "epoch": 7.385524372230428, "percentage": 92.46, "elapsed_time": "5:51:56", "remaining_time": "0:28:43"}
128
+ {"current_steps": 1260, "total_steps": 1352, "loss": 0.0562, "learning_rate": 1.1381707879016157e-06, "epoch": 7.444608567208272, "percentage": 93.2, "elapsed_time": "5:54:44", "remaining_time": "0:25:54"}
129
+ {"current_steps": 1270, "total_steps": 1352, "loss": 0.0556, "learning_rate": 9.048982181171894e-07, "epoch": 7.503692762186115, "percentage": 93.93, "elapsed_time": "5:57:33", "remaining_time": "0:23:05"}
130
+ {"current_steps": 1280, "total_steps": 1352, "loss": 0.0525, "learning_rate": 6.98132917350991e-07, "epoch": 7.562776957163958, "percentage": 94.67, "elapsed_time": "6:00:22", "remaining_time": "0:20:16"}
131
+ {"current_steps": 1290, "total_steps": 1352, "loss": 0.0549, "learning_rate": 5.179865216573654e-07, "epoch": 7.621861152141802, "percentage": 95.41, "elapsed_time": "6:03:03", "remaining_time": "0:17:26"}
132
+ {"current_steps": 1300, "total_steps": 1352, "loss": 0.0583, "learning_rate": 3.6455629509730136e-07, "epoch": 7.680945347119645, "percentage": 96.15, "elapsed_time": "6:05:55", "remaining_time": "0:14:38"}
133
+ {"current_steps": 1310, "total_steps": 1352, "loss": 0.0553, "learning_rate": 2.3792507722388835e-07, "epoch": 7.7400295420974885, "percentage": 96.89, "elapsed_time": "6:08:39", "remaining_time": "0:11:49"}
134
+ {"current_steps": 1320, "total_steps": 1352, "loss": 0.0556, "learning_rate": 1.3816123835588834e-07, "epoch": 7.7991137370753325, "percentage": 97.63, "elapsed_time": "6:11:26", "remaining_time": "0:09:00"}
135
+ {"current_steps": 1330, "total_steps": 1352, "loss": 0.0589, "learning_rate": 6.531864266343113e-08, "epoch": 7.858197932053176, "percentage": 98.37, "elapsed_time": "6:14:11", "remaining_time": "0:06:11"}
136
+ {"current_steps": 1340, "total_steps": 1352, "loss": 0.0603, "learning_rate": 1.943661908586636e-08, "epoch": 7.917282127031019, "percentage": 99.11, "elapsed_time": "6:17:00", "remaining_time": "0:03:22"}
137
+ {"current_steps": 1350, "total_steps": 1352, "loss": 0.0568, "learning_rate": 5.399400973882251e-10, "epoch": 7.976366322008863, "percentage": 99.85, "elapsed_time": "6:19:47", "remaining_time": "0:00:33"}
138
+ {"current_steps": 1352, "total_steps": 1352, "epoch": 7.988183161004431, "percentage": 100.0, "elapsed_time": "6:20:18", "remaining_time": "0:00:00"}
trainer_state.json ADDED
@@ -0,0 +1,1003 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 7.988183161004431,
5
+ "eval_steps": 500,
6
+ "global_step": 1352,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.059084194977843424,
13
+ "grad_norm": 0.6387189059092414,
14
+ "learning_rate": 9.998650208062712e-05,
15
+ "loss": 0.6972,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.11816838995568685,
20
+ "grad_norm": 0.48601036335500336,
21
+ "learning_rate": 9.994601561026155e-05,
22
+ "loss": 0.5423,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.17725258493353027,
27
+ "grad_norm": 0.40437591619558344,
28
+ "learning_rate": 9.98785624482278e-05,
29
+ "loss": 0.5149,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.2363367799113737,
34
+ "grad_norm": 0.5030211090458666,
35
+ "learning_rate": 9.978417901361958e-05,
36
+ "loss": 0.513,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.29542097488921715,
41
+ "grad_norm": 0.49098083558596206,
42
+ "learning_rate": 9.96629162656365e-05,
43
+ "loss": 0.4957,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.35450516986706054,
48
+ "grad_norm": 0.6329012343929873,
49
+ "learning_rate": 9.951483967607041e-05,
50
+ "loss": 0.495,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.413589364844904,
55
+ "grad_norm": 0.48252149699962754,
56
+ "learning_rate": 9.934002919395592e-05,
57
+ "loss": 0.4943,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.4726735598227474,
62
+ "grad_norm": 0.5221971068930835,
63
+ "learning_rate": 9.91385792024048e-05,
64
+ "loss": 0.4738,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.5317577548005908,
69
+ "grad_norm": 0.42549092560536134,
70
+ "learning_rate": 9.891059846764679e-05,
71
+ "loss": 0.4565,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.5908419497784343,
76
+ "grad_norm": 0.4606171719652433,
77
+ "learning_rate": 9.865621008030492e-05,
78
+ "loss": 0.4674,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.6499261447562777,
83
+ "grad_norm": 0.46353540699946943,
84
+ "learning_rate": 9.83755513889369e-05,
85
+ "loss": 0.4727,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.7090103397341211,
90
+ "grad_norm": 0.4815928480268326,
91
+ "learning_rate": 9.80687739258782e-05,
92
+ "loss": 0.4736,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.7680945347119645,
97
+ "grad_norm": 0.485838392040906,
98
+ "learning_rate": 9.773604332542729e-05,
99
+ "loss": 0.47,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.827178729689808,
104
+ "grad_norm": 0.5025850953484241,
105
+ "learning_rate": 9.737753923441688e-05,
106
+ "loss": 0.467,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.8862629246676514,
111
+ "grad_norm": 0.45997226542102815,
112
+ "learning_rate": 9.69934552152196e-05,
113
+ "loss": 0.4522,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.9453471196454948,
118
+ "grad_norm": 0.4546309634161405,
119
+ "learning_rate": 9.658399864124037e-05,
120
+ "loss": 0.4613,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 1.0044313146233383,
125
+ "grad_norm": 0.6577670848472944,
126
+ "learning_rate": 9.61493905849521e-05,
127
+ "loss": 0.4641,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 1.0635155096011817,
132
+ "grad_norm": 0.5743711541659764,
133
+ "learning_rate": 9.568986569853487e-05,
134
+ "loss": 0.3946,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 1.122599704579025,
139
+ "grad_norm": 0.5374571463070855,
140
+ "learning_rate": 9.520567208718337e-05,
141
+ "loss": 0.3882,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 1.1816838995568686,
146
+ "grad_norm": 0.6531134738909915,
147
+ "learning_rate": 9.469707117515067e-05,
148
+ "loss": 0.4205,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 1.240768094534712,
153
+ "grad_norm": 0.5201345622237219,
154
+ "learning_rate": 9.416433756460091e-05,
155
+ "loss": 0.386,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 1.2998522895125553,
160
+ "grad_norm": 0.7267530776250423,
161
+ "learning_rate": 9.360775888734698e-05,
162
+ "loss": 0.4096,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 1.3589364844903988,
167
+ "grad_norm": 0.5480147887972682,
168
+ "learning_rate": 9.302763564955331e-05,
169
+ "loss": 0.3921,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 1.4180206794682422,
174
+ "grad_norm": 0.6228502280992079,
175
+ "learning_rate": 9.242428106948749e-05,
176
+ "loss": 0.3788,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 1.4771048744460857,
181
+ "grad_norm": 0.7119116813192373,
182
+ "learning_rate": 9.179802090840853e-05,
183
+ "loss": 0.3894,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 1.536189069423929,
188
+ "grad_norm": 0.5987495739217404,
189
+ "learning_rate": 9.114919329468282e-05,
190
+ "loss": 0.3707,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 1.5952732644017726,
195
+ "grad_norm": 0.6278387167291306,
196
+ "learning_rate": 9.04781485412231e-05,
197
+ "loss": 0.3938,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 1.654357459379616,
202
+ "grad_norm": 0.5312391005336979,
203
+ "learning_rate": 8.978524895634842e-05,
204
+ "loss": 0.3799,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 1.7134416543574593,
209
+ "grad_norm": 0.7329625126762797,
210
+ "learning_rate": 8.907086864816803e-05,
211
+ "loss": 0.403,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 1.7725258493353029,
216
+ "grad_norm": 0.5600401734580108,
217
+ "learning_rate": 8.833539332259398e-05,
218
+ "loss": 0.3758,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 1.8316100443131462,
223
+ "grad_norm": 0.503395394356135,
224
+ "learning_rate": 8.757922007509207e-05,
225
+ "loss": 0.3963,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 1.8906942392909896,
230
+ "grad_norm": 0.6324775953771359,
231
+ "learning_rate": 8.680275717628337e-05,
232
+ "loss": 0.3858,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 1.9497784342688331,
237
+ "grad_norm": 0.5574107174736728,
238
+ "learning_rate": 8.600642385151205e-05,
239
+ "loss": 0.3799,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 2.0088626292466767,
244
+ "grad_norm": 0.5250864362886176,
245
+ "learning_rate": 8.519065005449858e-05,
246
+ "loss": 0.3763,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 2.06794682422452,
251
+ "grad_norm": 0.7754155552722259,
252
+ "learning_rate": 8.43558762352005e-05,
253
+ "loss": 0.2934,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 2.1270310192023634,
258
+ "grad_norm": 0.6889925166837503,
259
+ "learning_rate": 8.350255310200612e-05,
260
+ "loss": 0.3078,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 2.186115214180207,
265
+ "grad_norm": 0.6281519102970855,
266
+ "learning_rate": 8.263114137838947e-05,
267
+ "loss": 0.3028,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 2.24519940915805,
272
+ "grad_norm": 0.7619069663070173,
273
+ "learning_rate": 8.174211155415799e-05,
274
+ "loss": 0.2972,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 2.3042836041358936,
279
+ "grad_norm": 0.6469214076306162,
280
+ "learning_rate": 8.083594363142717e-05,
281
+ "loss": 0.2995,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 2.363367799113737,
286
+ "grad_norm": 0.7761443706661119,
287
+ "learning_rate": 7.991312686545937e-05,
288
+ "loss": 0.2963,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 2.4224519940915803,
293
+ "grad_norm": 0.6652219653359559,
294
+ "learning_rate": 7.897415950050676e-05,
295
+ "loss": 0.2987,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 2.481536189069424,
300
+ "grad_norm": 0.7586700003856579,
301
+ "learning_rate": 7.801954850080075e-05,
302
+ "loss": 0.3092,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 2.5406203840472674,
307
+ "grad_norm": 0.6663785963305503,
308
+ "learning_rate": 7.704980927683359e-05,
309
+ "loss": 0.2951,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 2.5997045790251105,
314
+ "grad_norm": 0.6913254608481674,
315
+ "learning_rate": 7.60654654070796e-05,
316
+ "loss": 0.3097,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 2.658788774002954,
321
+ "grad_norm": 0.6943652391419598,
322
+ "learning_rate": 7.506704835530634e-05,
323
+ "loss": 0.2999,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 2.7178729689807977,
328
+ "grad_norm": 0.644096596125316,
329
+ "learning_rate": 7.405509718362842e-05,
330
+ "loss": 0.2905,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 2.7769571639586412,
335
+ "grad_norm": 0.7660517390503399,
336
+ "learning_rate": 7.303015826145885e-05,
337
+ "loss": 0.309,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 2.8360413589364843,
342
+ "grad_norm": 0.7708918433168639,
343
+ "learning_rate": 7.199278497051498e-05,
344
+ "loss": 0.302,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 2.895125553914328,
349
+ "grad_norm": 0.626692120748867,
350
+ "learning_rate": 7.094353740603839e-05,
351
+ "loss": 0.297,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 2.9542097488921715,
356
+ "grad_norm": 0.7926892798861292,
357
+ "learning_rate": 6.988298207439021e-05,
358
+ "loss": 0.3101,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 2.9542097488921715,
363
+ "eval_loss": 0.4939613938331604,
364
+ "eval_runtime": 53.5552,
365
+ "eval_samples_per_second": 2.073,
366
+ "eval_steps_per_second": 0.523,
367
+ "step": 500
368
+ },
369
+ {
370
+ "epoch": 3.0132939438700146,
371
+ "grad_norm": 0.5747285632843896,
372
+ "learning_rate": 6.881169158718474e-05,
373
+ "loss": 0.2736,
374
+ "step": 510
375
+ },
376
+ {
377
+ "epoch": 3.072378138847858,
378
+ "grad_norm": 0.7661842329328333,
379
+ "learning_rate": 6.773024435212678e-05,
380
+ "loss": 0.2187,
381
+ "step": 520
382
+ },
383
+ {
384
+ "epoch": 3.1314623338257017,
385
+ "grad_norm": 0.8401289392682185,
386
+ "learning_rate": 6.663922426071977e-05,
387
+ "loss": 0.2057,
388
+ "step": 530
389
+ },
390
+ {
391
+ "epoch": 3.1905465288035453,
392
+ "grad_norm": 0.7506650372127406,
393
+ "learning_rate": 6.553922037301283e-05,
394
+ "loss": 0.2067,
395
+ "step": 540
396
+ },
397
+ {
398
+ "epoch": 3.2496307237813884,
399
+ "grad_norm": 0.7842941173009434,
400
+ "learning_rate": 6.443082659955738e-05,
401
+ "loss": 0.1989,
402
+ "step": 550
403
+ },
404
+ {
405
+ "epoch": 3.308714918759232,
406
+ "grad_norm": 0.7593744868915973,
407
+ "learning_rate": 6.331464138074493e-05,
408
+ "loss": 0.2179,
409
+ "step": 560
410
+ },
411
+ {
412
+ "epoch": 3.3677991137370755,
413
+ "grad_norm": 0.756091123285611,
414
+ "learning_rate": 6.219126736369903e-05,
415
+ "loss": 0.2176,
416
+ "step": 570
417
+ },
418
+ {
419
+ "epoch": 3.4268833087149186,
420
+ "grad_norm": 0.7869512689224245,
421
+ "learning_rate": 6.106131107689599e-05,
422
+ "loss": 0.2215,
423
+ "step": 580
424
+ },
425
+ {
426
+ "epoch": 3.485967503692762,
427
+ "grad_norm": 0.7636724676762149,
428
+ "learning_rate": 5.9925382602689974e-05,
429
+ "loss": 0.2153,
430
+ "step": 590
431
+ },
432
+ {
433
+ "epoch": 3.5450516986706058,
434
+ "grad_norm": 0.6815318566179079,
435
+ "learning_rate": 5.8784095247919305e-05,
436
+ "loss": 0.2133,
437
+ "step": 600
438
+ },
439
+ {
440
+ "epoch": 3.604135893648449,
441
+ "grad_norm": 0.7848948829508617,
442
+ "learning_rate": 5.763806521277184e-05,
443
+ "loss": 0.2109,
444
+ "step": 610
445
+ },
446
+ {
447
+ "epoch": 3.6632200886262924,
448
+ "grad_norm": 0.7715200213470335,
449
+ "learning_rate": 5.648791125808809e-05,
450
+ "loss": 0.2214,
451
+ "step": 620
452
+ },
453
+ {
454
+ "epoch": 3.722304283604136,
455
+ "grad_norm": 0.6480973448749833,
456
+ "learning_rate": 5.5334254371281934e-05,
457
+ "loss": 0.212,
458
+ "step": 630
459
+ },
460
+ {
461
+ "epoch": 3.781388478581979,
462
+ "grad_norm": 0.6618796234383102,
463
+ "learning_rate": 5.417771743105907e-05,
464
+ "loss": 0.2196,
465
+ "step": 640
466
+ },
467
+ {
468
+ "epoch": 3.8404726735598227,
469
+ "grad_norm": 0.9462710180746308,
470
+ "learning_rate": 5.3018924871114305e-05,
471
+ "loss": 0.2145,
472
+ "step": 650
473
+ },
474
+ {
475
+ "epoch": 3.8995568685376663,
476
+ "grad_norm": 0.7674586984793125,
477
+ "learning_rate": 5.185850234298942e-05,
478
+ "loss": 0.2199,
479
+ "step": 660
480
+ },
481
+ {
482
+ "epoch": 3.9586410635155094,
483
+ "grad_norm": 0.8420752213128357,
484
+ "learning_rate": 5.0697076378273354e-05,
485
+ "loss": 0.218,
486
+ "step": 670
487
+ },
488
+ {
489
+ "epoch": 4.017725258493353,
490
+ "grad_norm": 0.6235542870137168,
491
+ "learning_rate": 4.953527405032723e-05,
492
+ "loss": 0.1987,
493
+ "step": 680
494
+ },
495
+ {
496
+ "epoch": 4.0768094534711965,
497
+ "grad_norm": 0.8247620064480204,
498
+ "learning_rate": 4.8373722635717086e-05,
499
+ "loss": 0.1425,
500
+ "step": 690
501
+ },
502
+ {
503
+ "epoch": 4.13589364844904,
504
+ "grad_norm": 0.806070554149328,
505
+ "learning_rate": 4.721304927553658e-05,
506
+ "loss": 0.1313,
507
+ "step": 700
508
+ },
509
+ {
510
+ "epoch": 4.194977843426884,
511
+ "grad_norm": 1.1960115947293068,
512
+ "learning_rate": 4.60538806368031e-05,
513
+ "loss": 0.1397,
514
+ "step": 710
515
+ },
516
+ {
517
+ "epoch": 4.254062038404727,
518
+ "grad_norm": 0.7571134276917469,
519
+ "learning_rate": 4.489684257410958e-05,
520
+ "loss": 0.1421,
521
+ "step": 720
522
+ },
523
+ {
524
+ "epoch": 4.31314623338257,
525
+ "grad_norm": 0.8865025891479803,
526
+ "learning_rate": 4.374255979171538e-05,
527
+ "loss": 0.1386,
528
+ "step": 730
529
+ },
530
+ {
531
+ "epoch": 4.372230428360414,
532
+ "grad_norm": 0.9290220213968287,
533
+ "learning_rate": 4.2591655506257645e-05,
534
+ "loss": 0.1444,
535
+ "step": 740
536
+ },
537
+ {
538
+ "epoch": 4.431314623338257,
539
+ "grad_norm": 0.8896418597603776,
540
+ "learning_rate": 4.144475111026643e-05,
541
+ "loss": 0.1391,
542
+ "step": 750
543
+ },
544
+ {
545
+ "epoch": 4.4903988183161,
546
+ "grad_norm": 0.9053211649213782,
547
+ "learning_rate": 4.030246583666437e-05,
548
+ "loss": 0.1438,
549
+ "step": 760
550
+ },
551
+ {
552
+ "epoch": 4.549483013293944,
553
+ "grad_norm": 0.8453862385052026,
554
+ "learning_rate": 3.9165416424432414e-05,
555
+ "loss": 0.1415,
556
+ "step": 770
557
+ },
558
+ {
559
+ "epoch": 4.608567208271787,
560
+ "grad_norm": 0.8724405655899441,
561
+ "learning_rate": 3.803421678562213e-05,
562
+ "loss": 0.1492,
563
+ "step": 780
564
+ },
565
+ {
566
+ "epoch": 4.66765140324963,
567
+ "grad_norm": 0.98302153579186,
568
+ "learning_rate": 3.690947767389426e-05,
569
+ "loss": 0.1512,
570
+ "step": 790
571
+ },
572
+ {
573
+ "epoch": 4.726735598227474,
574
+ "grad_norm": 0.8137008256198869,
575
+ "learning_rate": 3.57918063547627e-05,
576
+ "loss": 0.1481,
577
+ "step": 800
578
+ },
579
+ {
580
+ "epoch": 4.7858197932053175,
581
+ "grad_norm": 0.8604546990181478,
582
+ "learning_rate": 3.468180627772144e-05,
583
+ "loss": 0.1418,
584
+ "step": 810
585
+ },
586
+ {
587
+ "epoch": 4.844903988183161,
588
+ "grad_norm": 0.8028241587093687,
589
+ "learning_rate": 3.358007675043224e-05,
590
+ "loss": 0.146,
591
+ "step": 820
592
+ },
593
+ {
594
+ "epoch": 4.903988183161005,
595
+ "grad_norm": 0.8209334713352179,
596
+ "learning_rate": 3.2487212615148316e-05,
597
+ "loss": 0.1407,
598
+ "step": 830
599
+ },
600
+ {
601
+ "epoch": 4.963072378138848,
602
+ "grad_norm": 0.9318035909918932,
603
+ "learning_rate": 3.1403803927549006e-05,
604
+ "loss": 0.1502,
605
+ "step": 840
606
+ },
607
+ {
608
+ "epoch": 5.022156573116692,
609
+ "grad_norm": 0.6982555180872486,
610
+ "learning_rate": 3.0330435638158806e-05,
611
+ "loss": 0.1322,
612
+ "step": 850
613
+ },
614
+ {
615
+ "epoch": 5.081240768094535,
616
+ "grad_norm": 0.9099529668785485,
617
+ "learning_rate": 2.9267687276522876e-05,
618
+ "loss": 0.0985,
619
+ "step": 860
620
+ },
621
+ {
622
+ "epoch": 5.140324963072378,
623
+ "grad_norm": 0.8093436219539469,
624
+ "learning_rate": 2.821613263830912e-05,
625
+ "loss": 0.0929,
626
+ "step": 870
627
+ },
628
+ {
629
+ "epoch": 5.199409158050222,
630
+ "grad_norm": 0.908675419764728,
631
+ "learning_rate": 2.717633947550651e-05,
632
+ "loss": 0.0941,
633
+ "step": 880
634
+ },
635
+ {
636
+ "epoch": 5.258493353028065,
637
+ "grad_norm": 0.9144782506889362,
638
+ "learning_rate": 2.614886918988604e-05,
639
+ "loss": 0.0951,
640
+ "step": 890
641
+ },
642
+ {
643
+ "epoch": 5.317577548005908,
644
+ "grad_norm": 0.8302439773379418,
645
+ "learning_rate": 2.5134276529890644e-05,
646
+ "loss": 0.0926,
647
+ "step": 900
648
+ },
649
+ {
650
+ "epoch": 5.376661742983752,
651
+ "grad_norm": 0.8145999759475107,
652
+ "learning_rate": 2.4133109291117156e-05,
653
+ "loss": 0.095,
654
+ "step": 910
655
+ },
656
+ {
657
+ "epoch": 5.435745937961595,
658
+ "grad_norm": 0.7459552675334057,
659
+ "learning_rate": 2.314590802055232e-05,
660
+ "loss": 0.0886,
661
+ "step": 920
662
+ },
663
+ {
664
+ "epoch": 5.4948301329394384,
665
+ "grad_norm": 0.9033419203896008,
666
+ "learning_rate": 2.2173205724722318e-05,
667
+ "loss": 0.096,
668
+ "step": 930
669
+ },
670
+ {
671
+ "epoch": 5.5539143279172825,
672
+ "grad_norm": 0.882377183289936,
673
+ "learning_rate": 2.121552758191366e-05,
674
+ "loss": 0.0962,
675
+ "step": 940
676
+ },
677
+ {
678
+ "epoch": 5.612998522895126,
679
+ "grad_norm": 0.8033415953079253,
680
+ "learning_rate": 2.027339065862064e-05,
681
+ "loss": 0.0985,
682
+ "step": 950
683
+ },
684
+ {
685
+ "epoch": 5.672082717872969,
686
+ "grad_norm": 0.9269892443045443,
687
+ "learning_rate": 1.934730363037237e-05,
688
+ "loss": 0.0939,
689
+ "step": 960
690
+ },
691
+ {
692
+ "epoch": 5.731166912850813,
693
+ "grad_norm": 0.8483635995759108,
694
+ "learning_rate": 1.843776650709046e-05,
695
+ "loss": 0.0975,
696
+ "step": 970
697
+ },
698
+ {
699
+ "epoch": 5.790251107828656,
700
+ "grad_norm": 0.7664349269568396,
701
+ "learning_rate": 1.7545270363125153e-05,
702
+ "loss": 0.093,
703
+ "step": 980
704
+ },
705
+ {
706
+ "epoch": 5.849335302806499,
707
+ "grad_norm": 0.7270945706246518,
708
+ "learning_rate": 1.6670297072116165e-05,
709
+ "loss": 0.0959,
710
+ "step": 990
711
+ },
712
+ {
713
+ "epoch": 5.908419497784343,
714
+ "grad_norm": 0.4763779090409354,
715
+ "learning_rate": 1.581331904682089e-05,
716
+ "loss": 0.0918,
717
+ "step": 1000
718
+ },
719
+ {
720
+ "epoch": 5.908419497784343,
721
+ "eval_loss": 0.7311862707138062,
722
+ "eval_runtime": 52.641,
723
+ "eval_samples_per_second": 2.109,
724
+ "eval_steps_per_second": 0.532,
725
+ "step": 1000
726
+ },
727
+ {
728
+ "epoch": 5.967503692762186,
729
+ "grad_norm": 0.7880059330281542,
730
+ "learning_rate": 1.4974798984050942e-05,
731
+ "loss": 0.0933,
732
+ "step": 1010
733
+ },
734
+ {
735
+ "epoch": 6.026587887740029,
736
+ "grad_norm": 0.5434228078562925,
737
+ "learning_rate": 1.4155189614854275e-05,
738
+ "loss": 0.0828,
739
+ "step": 1020
740
+ },
741
+ {
742
+ "epoch": 6.085672082717873,
743
+ "grad_norm": 0.6734629959345333,
744
+ "learning_rate": 1.3354933460078217e-05,
745
+ "loss": 0.0678,
746
+ "step": 1030
747
+ },
748
+ {
749
+ "epoch": 6.144756277695716,
750
+ "grad_norm": 0.6754051572707525,
751
+ "learning_rate": 1.257446259144494e-05,
752
+ "loss": 0.0629,
753
+ "step": 1040
754
+ },
755
+ {
756
+ "epoch": 6.203840472673559,
757
+ "grad_norm": 0.6799650760230072,
758
+ "learning_rate": 1.1814198398268794e-05,
759
+ "loss": 0.0697,
760
+ "step": 1050
761
+ },
762
+ {
763
+ "epoch": 6.262924667651403,
764
+ "grad_norm": 0.6540795313123376,
765
+ "learning_rate": 1.1074551359941021e-05,
766
+ "loss": 0.0644,
767
+ "step": 1060
768
+ },
769
+ {
770
+ "epoch": 6.3220088626292466,
771
+ "grad_norm": 0.814973115457644,
772
+ "learning_rate": 1.0355920824305127e-05,
773
+ "loss": 0.069,
774
+ "step": 1070
775
+ },
776
+ {
777
+ "epoch": 6.381093057607091,
778
+ "grad_norm": 0.8090154097885933,
779
+ "learning_rate": 9.658694792042284e-06,
780
+ "loss": 0.0666,
781
+ "step": 1080
782
+ },
783
+ {
784
+ "epoch": 6.440177252584934,
785
+ "grad_norm": 0.7016078216972328,
786
+ "learning_rate": 8.98324970718319e-06,
787
+ "loss": 0.0679,
788
+ "step": 1090
789
+ },
790
+ {
791
+ "epoch": 6.499261447562777,
792
+ "grad_norm": 0.7288879724763213,
793
+ "learning_rate": 8.329950253859703e-06,
794
+ "loss": 0.0656,
795
+ "step": 1100
796
+ },
797
+ {
798
+ "epoch": 6.558345642540621,
799
+ "grad_norm": 0.7247263147770627,
800
+ "learning_rate": 7.699149159405734e-06,
801
+ "loss": 0.0664,
802
+ "step": 1110
803
+ },
804
+ {
805
+ "epoch": 6.617429837518464,
806
+ "grad_norm": 0.6219352284185693,
807
+ "learning_rate": 7.0911870039138015e-06,
808
+ "loss": 0.0673,
809
+ "step": 1120
810
+ },
811
+ {
812
+ "epoch": 6.676514032496307,
813
+ "grad_norm": 0.7481718513639776,
814
+ "learning_rate": 6.506392036350167e-06,
815
+ "loss": 0.0697,
816
+ "step": 1130
817
+ },
818
+ {
819
+ "epoch": 6.735598227474151,
820
+ "grad_norm": 0.7642809598885449,
821
+ "learning_rate": 5.945079997327713e-06,
822
+ "loss": 0.0669,
823
+ "step": 1140
824
+ },
825
+ {
826
+ "epoch": 6.794682422451994,
827
+ "grad_norm": 0.7060296135322504,
828
+ "learning_rate": 5.407553948632277e-06,
829
+ "loss": 0.0683,
830
+ "step": 1150
831
+ },
832
+ {
833
+ "epoch": 6.853766617429837,
834
+ "grad_norm": 0.7218214547563072,
835
+ "learning_rate": 4.894104109594466e-06,
836
+ "loss": 0.0684,
837
+ "step": 1160
838
+ },
839
+ {
840
+ "epoch": 6.912850812407681,
841
+ "grad_norm": 0.6944520001481999,
842
+ "learning_rate": 4.405007700395497e-06,
843
+ "loss": 0.0687,
844
+ "step": 1170
845
+ },
846
+ {
847
+ "epoch": 6.971935007385524,
848
+ "grad_norm": 0.8260640922228497,
849
+ "learning_rate": 3.940528792391223e-06,
850
+ "loss": 0.0721,
851
+ "step": 1180
852
+ },
853
+ {
854
+ "epoch": 7.0310192023633675,
855
+ "grad_norm": 0.6707004455651014,
856
+ "learning_rate": 3.5009181655356826e-06,
857
+ "loss": 0.0653,
858
+ "step": 1190
859
+ },
860
+ {
861
+ "epoch": 7.0901033973412115,
862
+ "grad_norm": 0.6805257469848828,
863
+ "learning_rate": 3.0864131729807398e-06,
864
+ "loss": 0.0579,
865
+ "step": 1200
866
+ },
867
+ {
868
+ "epoch": 7.149187592319055,
869
+ "grad_norm": 0.5495171159123228,
870
+ "learning_rate": 2.6972376129251686e-06,
871
+ "loss": 0.0585,
872
+ "step": 1210
873
+ },
874
+ {
875
+ "epoch": 7.208271787296898,
876
+ "grad_norm": 0.6136512130241976,
877
+ "learning_rate": 2.3336016077822154e-06,
878
+ "loss": 0.0562,
879
+ "step": 1220
880
+ },
881
+ {
882
+ "epoch": 7.267355982274742,
883
+ "grad_norm": 0.7591755724568,
884
+ "learning_rate": 1.9957014907310224e-06,
885
+ "loss": 0.0572,
886
+ "step": 1230
887
+ },
888
+ {
889
+ "epoch": 7.326440177252585,
890
+ "grad_norm": 0.6022538817881757,
891
+ "learning_rate": 1.6837196997130434e-06,
892
+ "loss": 0.06,
893
+ "step": 1240
894
+ },
895
+ {
896
+ "epoch": 7.385524372230428,
897
+ "grad_norm": 0.774444698651241,
898
+ "learning_rate": 1.3978246789307149e-06,
899
+ "loss": 0.0565,
900
+ "step": 1250
901
+ },
902
+ {
903
+ "epoch": 7.444608567208272,
904
+ "grad_norm": 0.7442025153147653,
905
+ "learning_rate": 1.1381707879016157e-06,
906
+ "loss": 0.0562,
907
+ "step": 1260
908
+ },
909
+ {
910
+ "epoch": 7.503692762186115,
911
+ "grad_norm": 0.5700289390004409,
912
+ "learning_rate": 9.048982181171894e-07,
913
+ "loss": 0.0556,
914
+ "step": 1270
915
+ },
916
+ {
917
+ "epoch": 7.562776957163958,
918
+ "grad_norm": 0.695724523693832,
919
+ "learning_rate": 6.98132917350991e-07,
920
+ "loss": 0.0525,
921
+ "step": 1280
922
+ },
923
+ {
924
+ "epoch": 7.621861152141802,
925
+ "grad_norm": 0.6867233808424225,
926
+ "learning_rate": 5.179865216573654e-07,
927
+ "loss": 0.0549,
928
+ "step": 1290
929
+ },
930
+ {
931
+ "epoch": 7.680945347119645,
932
+ "grad_norm": 0.7051791342497011,
933
+ "learning_rate": 3.6455629509730136e-07,
934
+ "loss": 0.0583,
935
+ "step": 1300
936
+ },
937
+ {
938
+ "epoch": 7.7400295420974885,
939
+ "grad_norm": 0.6772707185024253,
940
+ "learning_rate": 2.3792507722388835e-07,
941
+ "loss": 0.0553,
942
+ "step": 1310
943
+ },
944
+ {
945
+ "epoch": 7.7991137370753325,
946
+ "grad_norm": 0.6815226755163512,
947
+ "learning_rate": 1.3816123835588834e-07,
948
+ "loss": 0.0556,
949
+ "step": 1320
950
+ },
951
+ {
952
+ "epoch": 7.858197932053176,
953
+ "grad_norm": 0.6475756485632287,
954
+ "learning_rate": 6.531864266343113e-08,
955
+ "loss": 0.0589,
956
+ "step": 1330
957
+ },
958
+ {
959
+ "epoch": 7.917282127031019,
960
+ "grad_norm": 0.7007100620520975,
961
+ "learning_rate": 1.943661908586636e-08,
962
+ "loss": 0.0603,
963
+ "step": 1340
964
+ },
965
+ {
966
+ "epoch": 7.976366322008863,
967
+ "grad_norm": 0.7030879428421536,
968
+ "learning_rate": 5.399400973882251e-10,
969
+ "loss": 0.0568,
970
+ "step": 1350
971
+ },
972
+ {
973
+ "epoch": 7.988183161004431,
974
+ "step": 1352,
975
+ "total_flos": 1435586865135616.0,
976
+ "train_loss": 0.22072081432606167,
977
+ "train_runtime": 22818.9262,
978
+ "train_samples_per_second": 1.896,
979
+ "train_steps_per_second": 0.059
980
+ }
981
+ ],
982
+ "logging_steps": 10,
983
+ "max_steps": 1352,
984
+ "num_input_tokens_seen": 0,
985
+ "num_train_epochs": 8,
986
+ "save_steps": 1000,
987
+ "stateful_callbacks": {
988
+ "TrainerControl": {
989
+ "args": {
990
+ "should_epoch_stop": false,
991
+ "should_evaluate": false,
992
+ "should_log": false,
993
+ "should_save": true,
994
+ "should_training_stop": false
995
+ },
996
+ "attributes": {}
997
+ }
998
+ },
999
+ "total_flos": 1435586865135616.0,
1000
+ "train_batch_size": 2,
1001
+ "trial_name": null,
1002
+ "trial_params": null
1003
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:899f0486eced747a2f123ddafb9d6fecbc5fefa74f8054cc454aa966f7165bc2
3
+ size 6968
training_eval_loss.png ADDED
training_loss.png ADDED