Upload handler.py
Browse files- handler.py +119 -0
handler.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, Any
|
2 |
+
import os
|
3 |
+
from pathlib import Path
|
4 |
+
import time
|
5 |
+
from datetime import datetime
|
6 |
+
import torch
|
7 |
+
import base64
|
8 |
+
from io import BytesIO
|
9 |
+
|
10 |
+
from hyvideo.utils.file_utils import save_videos_grid
|
11 |
+
from hyvideo.config import parse_args
|
12 |
+
from hyvideo.inference import HunyuanVideoSampler
|
13 |
+
|
14 |
+
class EndpointHandler:
|
15 |
+
def __init__(self, path: str = ""):
|
16 |
+
"""Initialize the handler with the model path.
|
17 |
+
|
18 |
+
Args:
|
19 |
+
path: Path to the model weights directory
|
20 |
+
"""
|
21 |
+
self.args = parse_args()
|
22 |
+
models_root_path = Path(path)
|
23 |
+
if not models_root_path.exists():
|
24 |
+
raise ValueError(f"`models_root` not exists: {models_root_path}")
|
25 |
+
|
26 |
+
# Initialize model
|
27 |
+
self.model = HunyuanVideoSampler.from_pretrained(models_root_path, args=self.args)
|
28 |
+
|
29 |
+
# Default parameters
|
30 |
+
self.default_params = {
|
31 |
+
"num_inference_steps": 50,
|
32 |
+
"guidance_scale": 1.0,
|
33 |
+
"flow_shift": 7.0,
|
34 |
+
"embedded_guidance_scale": 6.0,
|
35 |
+
"video_length": 129, # 5s
|
36 |
+
"resolution": "1280x720"
|
37 |
+
}
|
38 |
+
|
39 |
+
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
40 |
+
"""Process the input data and generate video.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
data: Dictionary containing the input parameters
|
44 |
+
Required:
|
45 |
+
- inputs (str): The prompt text
|
46 |
+
Optional:
|
47 |
+
- resolution (str): Video resolution like "1280x720"
|
48 |
+
- video_length (int): Number of frames
|
49 |
+
- seed (int): Random seed (-1 for random)
|
50 |
+
- num_inference_steps (int): Number of inference steps
|
51 |
+
- guidance_scale (float): Guidance scale value
|
52 |
+
- flow_shift (float): Flow shift value
|
53 |
+
- embedded_guidance_scale (float): Embedded guidance scale value
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
Dictionary containing the base64 encoded video
|
57 |
+
"""
|
58 |
+
# Get prompt
|
59 |
+
prompt = data.pop("inputs", None)
|
60 |
+
if prompt is None:
|
61 |
+
raise ValueError("No prompt provided in the 'inputs' field")
|
62 |
+
|
63 |
+
# Get optional parameters with defaults
|
64 |
+
resolution = data.pop("resolution", self.default_params["resolution"])
|
65 |
+
video_length = int(data.pop("video_length", self.default_params["video_length"]))
|
66 |
+
seed = int(data.pop("seed", -1))
|
67 |
+
num_inference_steps = int(data.pop("num_inference_steps", self.default_params["num_inference_steps"]))
|
68 |
+
guidance_scale = float(data.pop("guidance_scale", self.default_params["guidance_scale"]))
|
69 |
+
flow_shift = float(data.pop("flow_shift", self.default_params["flow_shift"]))
|
70 |
+
embedded_guidance_scale = float(data.pop("embedded_guidance_scale", self.default_params["embedded_guidance_scale"]))
|
71 |
+
|
72 |
+
# Process resolution
|
73 |
+
width, height = resolution.split("x")
|
74 |
+
width, height = int(width), int(height)
|
75 |
+
|
76 |
+
# Set seed
|
77 |
+
seed = None if seed == -1 else seed
|
78 |
+
|
79 |
+
# Generate video
|
80 |
+
outputs = self.model.predict(
|
81 |
+
prompt=prompt,
|
82 |
+
height=height,
|
83 |
+
width=width,
|
84 |
+
video_length=video_length,
|
85 |
+
seed=seed,
|
86 |
+
negative_prompt="", # not applicable in inference
|
87 |
+
infer_steps=num_inference_steps,
|
88 |
+
guidance_scale=guidance_scale,
|
89 |
+
num_videos_per_prompt=1,
|
90 |
+
flow_shift=flow_shift,
|
91 |
+
batch_size=1,
|
92 |
+
embedded_guidance_scale=embedded_guidance_scale
|
93 |
+
)
|
94 |
+
|
95 |
+
# Process output video
|
96 |
+
samples = outputs['samples']
|
97 |
+
sample = samples[0].unsqueeze(0)
|
98 |
+
|
99 |
+
# Save video to temporary file
|
100 |
+
temp_dir = "/tmp/video_output"
|
101 |
+
os.makedirs(temp_dir, exist_ok=True)
|
102 |
+
|
103 |
+
time_flag = datetime.fromtimestamp(time.time()).strftime("%Y-%m-%d-%H:%M:%S")
|
104 |
+
video_path = f"{temp_dir}/{time_flag}_seed{outputs['seeds'][0]}.mp4"
|
105 |
+
save_videos_grid(sample, video_path, fps=24)
|
106 |
+
|
107 |
+
# Read video file and convert to base64
|
108 |
+
with open(video_path, "rb") as f:
|
109 |
+
video_bytes = f.read()
|
110 |
+
video_base64 = base64.b64encode(video_bytes).decode()
|
111 |
+
|
112 |
+
# Clean up
|
113 |
+
os.remove(video_path)
|
114 |
+
|
115 |
+
return {
|
116 |
+
"video_base64": video_base64,
|
117 |
+
"seed": outputs['seeds'][0],
|
118 |
+
"prompt": outputs['prompts'][0]
|
119 |
+
}
|