--- license: apache-2.0 base_model: facebook/vit-mae-base tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-mae-base-effusion-classifier results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8173673328738801 --- # vit-mae-base-effusion-classifier This model is a fine-tuned version of [facebook/vit-mae-base](https://huggingface.co/facebook/vit-mae-base) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4179 - Accuracy: 0.8174 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6554 | 1.0 | 362 | 0.6692 | 0.6030 | | 0.569 | 2.0 | 725 | 0.5891 | 0.7023 | | 0.6098 | 3.0 | 1088 | 0.5421 | 0.7367 | | 0.4984 | 4.0 | 1451 | 0.5668 | 0.7043 | | 0.4884 | 5.0 | 1813 | 0.6061 | 0.6844 | | 0.4351 | 6.0 | 2176 | 0.4481 | 0.8098 | | 0.4794 | 7.0 | 2539 | 0.4384 | 0.8084 | | 0.4636 | 8.0 | 2902 | 0.4343 | 0.8077 | | 0.4816 | 9.0 | 3264 | 0.5363 | 0.7491 | | 0.5016 | 10.0 | 3627 | 0.4993 | 0.7677 | | 0.4826 | 11.0 | 3990 | 0.4483 | 0.8043 | | 0.4707 | 12.0 | 4353 | 0.4249 | 0.8112 | | 0.4483 | 13.0 | 4715 | 0.4193 | 0.8160 | | 0.419 | 14.0 | 5078 | 0.4146 | 0.8215 | | 0.5039 | 15.0 | 5441 | 0.4188 | 0.8181 | | 0.4111 | 16.0 | 5804 | 0.4459 | 0.8112 | | 0.3293 | 17.0 | 6166 | 0.4228 | 0.8181 | | 0.4171 | 18.0 | 6529 | 0.4239 | 0.8215 | | 0.3375 | 19.0 | 6892 | 0.4162 | 0.8215 | | 0.32 | 19.96 | 7240 | 0.4179 | 0.8174 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2