jayksharma
commited on
Update super-large-language-model.py
Browse files
super-large-language-model.py
CHANGED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
|
5 |
+
class TransformerModel(nn.Module):
|
6 |
+
def __init__(self, vocab_size, d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, dropout=0.1):
|
7 |
+
super(TransformerModel, self).__init__()
|
8 |
+
self.model_type = 'Transformer'
|
9 |
+
self.src_mask = None
|
10 |
+
self.pos_encoder = PositionalEncoding(d_model, dropout)
|
11 |
+
self.encoder = nn.Embedding(vocab_size, d_model)
|
12 |
+
self.transformer = nn.Transformer(d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, dropout)
|
13 |
+
self.decoder = nn.Linear(d_model, vocab_size)
|
14 |
+
|
15 |
+
def forward(self, src, tgt, src_mask=None, tgt_mask=None):
|
16 |
+
src = self.encoder(src) * math.sqrt(self.d_model)
|
17 |
+
src = self.pos_encoder(src)
|
18 |
+
tgt = self.encoder(tgt) * math.sqrt(self.d_model)
|
19 |
+
tgt = self.pos_encoder(tgt)
|
20 |
+
output = self.transformer(src, tgt, src_mask, tgt_mask)
|
21 |
+
output = self.decoder(output)
|
22 |
+
return output
|
23 |
+
|
24 |
+
class PositionalEncoding(nn.Module):
|
25 |
+
def __init__(self, d_model, dropout=0.1, max_len=5000):
|
26 |
+
super(PositionalEncoding, self).__init__()
|
27 |
+
self.dropout = nn.Dropout(p=dropout)
|
28 |
+
|
29 |
+
pe = torch.zeros(max_len, d_model)
|
30 |
+
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
|
31 |
+
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
|
32 |
+
pe[:, 0::2] = torch.sin(position * div_term)
|
33 |
+
pe[:, 1::2] = torch.cos(position * div_term)
|
34 |
+
pe = pe.unsqueeze(0).transpose(0, 1)
|
35 |
+
self.register_buffer('pe', pe)
|
36 |
+
|
37 |
+
def forward(self, x):
|
38 |
+
x = x + self.pe[:x.size(0), :]
|
39 |
+
return self.dropout(x)
|