jayksharma commited on
Commit
de9bf5c
·
verified ·
1 Parent(s): da9ac04

Update super-large-language-model.py

Browse files
Files changed (1) hide show
  1. super-large-language-model.py +39 -0
super-large-language-model.py CHANGED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ import torch.nn as nn
4
+
5
+ class TransformerModel(nn.Module):
6
+ def __init__(self, vocab_size, d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, dropout=0.1):
7
+ super(TransformerModel, self).__init__()
8
+ self.model_type = 'Transformer'
9
+ self.src_mask = None
10
+ self.pos_encoder = PositionalEncoding(d_model, dropout)
11
+ self.encoder = nn.Embedding(vocab_size, d_model)
12
+ self.transformer = nn.Transformer(d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, dropout)
13
+ self.decoder = nn.Linear(d_model, vocab_size)
14
+
15
+ def forward(self, src, tgt, src_mask=None, tgt_mask=None):
16
+ src = self.encoder(src) * math.sqrt(self.d_model)
17
+ src = self.pos_encoder(src)
18
+ tgt = self.encoder(tgt) * math.sqrt(self.d_model)
19
+ tgt = self.pos_encoder(tgt)
20
+ output = self.transformer(src, tgt, src_mask, tgt_mask)
21
+ output = self.decoder(output)
22
+ return output
23
+
24
+ class PositionalEncoding(nn.Module):
25
+ def __init__(self, d_model, dropout=0.1, max_len=5000):
26
+ super(PositionalEncoding, self).__init__()
27
+ self.dropout = nn.Dropout(p=dropout)
28
+
29
+ pe = torch.zeros(max_len, d_model)
30
+ position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
31
+ div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
32
+ pe[:, 0::2] = torch.sin(position * div_term)
33
+ pe[:, 1::2] = torch.cos(position * div_term)
34
+ pe = pe.unsqueeze(0).transpose(0, 1)
35
+ self.register_buffer('pe', pe)
36
+
37
+ def forward(self, x):
38
+ x = x + self.pe[:x.size(0), :]
39
+ return self.dropout(x)