File size: 2,120 Bytes
41026df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: twitter-data-microsoft-xtremedistil-l6-h256-uncased-sentiment-finetuned-memes
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# twitter-data-microsoft-xtremedistil-l6-h256-uncased-sentiment-finetuned-memes
This model is a fine-tuned version of [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3635
- Accuracy: 0.8756
- Precision: 0.8761
- Recall: 0.8756
- F1: 0.8755
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.6142 | 1.0 | 1762 | 0.5396 | 0.8022 | 0.8010 | 0.8022 | 0.8014 |
| 0.4911 | 2.0 | 3524 | 0.4588 | 0.8322 | 0.8332 | 0.8322 | 0.8325 |
| 0.4511 | 3.0 | 5286 | 0.4072 | 0.8562 | 0.8564 | 0.8562 | 0.8559 |
| 0.412 | 4.0 | 7048 | 0.3825 | 0.8673 | 0.8680 | 0.8673 | 0.8672 |
| 0.3886 | 5.0 | 8810 | 0.3677 | 0.8745 | 0.8753 | 0.8745 | 0.8745 |
| 0.3914 | 6.0 | 10572 | 0.3635 | 0.8756 | 0.8761 | 0.8756 | 0.8755 |
### Framework versions
- Transformers 4.24.0.dev0
- Pytorch 1.11.0+cu102
- Datasets 2.6.1
- Tokenizers 0.13.1
|