Text-to-Image
Diffusers
lora
stable-diffusion
clementchadebec commited on
Commit
87f247b
·
verified ·
1 Parent(s): bdefddf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -3
README.md CHANGED
@@ -1,3 +1,49 @@
1
- ---
2
- license: cc-by-nc-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ library_name: diffusers
4
+ base_model: runwayml/stable-diffusion-v1-5
5
+ tags:
6
+ - lora
7
+ - text-to-image
8
+ ---
9
+ # ⚡ FlashDiffusion: FlashSD ⚡
10
+
11
+ <p align="center">
12
+ <img style="width:400px;" src="images/hf_grid.png">
13
+ </p>
14
+
15
+ Flash Diffusion is a diffusion distillation method proposed in [ADD ARXIV]() *by Clément Chadebec, Onur Tasar and Benjamin Aubin.*
16
+ This model is a 26.4M LoRA distilled version of SD1.5 model. The main purpose of this model is to reproduce the main results of the paper.
17
+
18
+ # How to use?
19
+
20
+ The model can be used using the `StableDiffusionPipeline` from `diffusers` library directly. It can allow reducing the number of required sampling steps to **2-4 steps**.
21
+
22
+ ```python
23
+ from diffusers import StableDiffusionPipeline, LCMScheduler
24
+
25
+ adapter_id = "jasperai/flash-sd"
26
+
27
+ pipe = StableDiffusionPipeline.from_pretrained(
28
+ "runwayml/stable-diffusion-v1-5",
29
+ use_safetensors=True,
30
+ )
31
+
32
+ pipe.scheduler = LCMScheduler.from_pretrained(
33
+ "runwayml/stable-diffusion-v1-5",
34
+ subfolder="scheduler",
35
+ timestep_spacing="trailing",
36
+ )
37
+ pipe.to("cuda")
38
+
39
+ # Fuse and load LoRA weights
40
+ pipe.load_lora_weights(adapter_id)
41
+ pipe.fuse_lora()
42
+
43
+ prompt = "A raccoon reading a book in a lush forest."
44
+
45
+ image = pipe(prompt, num_inference_steps=4, guidance_scale=0).images[0]
46
+ ```
47
+ <p align="center">
48
+ <img style="width:400px;" src="images/raccoon.png">
49
+ </p>