asahi417 commited on
Commit
d85edee
·
verified ·
1 Parent(s): 02bcb59

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -1
README.md CHANGED
@@ -8,6 +8,10 @@ tags:
8
 
9
  # Cascaded English Speech2Text Translation
10
  This is a pipeline for speech-to-text translation from English speech to any target language text based on the cascaded approach, that consists of ASR and translation.
 
 
 
 
11
 
12
  ## Usage
13
  Here is an example to translate English speech into Japanese text translation.
@@ -23,7 +27,7 @@ from transformers import pipeline
23
  # load model
24
  pipe = pipeline(
25
  model="japanese-asr/en-cascaded-s2t-translation",
26
- model_translation="facebook/nllb-200-distilled-600M",
27
  tgt_lang="jpn_Jpan",
28
  model_kwargs={"attn_implementation": "sdpa"},
29
  chunk_length_s=15,
@@ -34,3 +38,9 @@ pipe = pipeline(
34
  output = pipe("./sample.wav")
35
  ```
36
 
 
 
 
 
 
 
 
8
 
9
  # Cascaded English Speech2Text Translation
10
  This is a pipeline for speech-to-text translation from English speech to any target language text based on the cascaded approach, that consists of ASR and translation.
11
+ The pipeline employs [distil-whisper/distil-large-v3](https://huggingface.co/distil-whisper/distil-large-v3) for ASR (English speech -> English text)
12
+ and [facebook/nllb-200-3.3B](https://huggingface.co/facebook/nllb-200-3.3B) for text translation.
13
+ The input must be English speech, while the translation can be in any languages NLLB trained on. Please find the all available languages and their language codes
14
+ [here](https://github.com/facebookresearch/flores/blob/main/flores200/README.md#languages-in-flores-200).
15
 
16
  ## Usage
17
  Here is an example to translate English speech into Japanese text translation.
 
27
  # load model
28
  pipe = pipeline(
29
  model="japanese-asr/en-cascaded-s2t-translation",
30
+ model_translation="facebook/nllb-200-3.3B",
31
  tgt_lang="jpn_Jpan",
32
  model_kwargs={"attn_implementation": "sdpa"},
33
  chunk_length_s=15,
 
38
  output = pipe("./sample.wav")
39
  ```
40
 
41
+ Other NLLB models can be used by setting `model_translation` such as following.
42
+ - [facebook/nllb-200-3.3B](https://huggingface.co/facebook/nllb-200-3.3B)
43
+ - [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M)
44
+ - [facebook/nllb-200-distilled-1.3B](https://huggingface.co/facebook/nllb-200-distilled-1.3B)
45
+ - [facebook/nllb-200-1.3B](https://huggingface.co/facebook/nllb-200-1.3B)
46
+