# Classifier for Selecting Pathology Images This is a ConvNext-tiny model trained on 30K annotations on if image is belongs to the pathology image or non-pathology image. ## Usage > #### Step1: Download model checkpoint in [convnext-pathology-classifier](https://huggingface.co/jamessyx/convnext-pathology-classifier) . > #### Step2: Load the model You can use the following code to load the model. ```python import timm ##timm version 0.9.7 import torch.nn as nn import torch from torchvision import transforms from PIL import Image class CT_SINGLE(nn.Module): def __init__(self, model_name): super(CT_SINGLE, self).__init__() print(model_name) self.model_global = timm.create_model(model_name, pretrained=False, num_classes=0) self.fc = nn.Linear(768, 2) def forward(self, x_global): features_global = self.model_global(x_global) logits = self.fc(features_global) return logits def load_model(checkpoint_path, model): checkpoint = torch.load(checkpoint_path, map_location='cpu') model.load_state_dict(checkpoint['model']) print("Resume checkpoint %s" % checkpoint_path) ##load the model model = CT_SINGLE('convnext_tiny') model_path = 'Your model path' load_model(model_path, model) model.eval().cuda() ``` > ### Step3: Construct and predict your own data In this step, you'll construct your own dataset. Use PIL to load images and employ `transforms` from torchvision for data preprocessing. ```python def default_loader(path): img = Image.open(path) return img.convert('RGB') data_transforms = transforms.Compose([ transforms.Resize((224,224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) def predict(img_path, model): img = default_loader(img_path) img = data_transforms(img) img = img.unsqueeze(0) img = img.cuda() output = model(img) _, pred = torch.topk(output, 1, dim=-1) pred = pred.data.cpu().numpy()[:, 0] return pred ## 0 indicates non-pathology image and 1 indicates pathology image img_path = 'Your image path' pred = predict(img_path, model) print(pred) ```