--- library_name: transformers tags: [] --- ## 以下は推論用コードです。 * 事前に以下をインストールしてください。 * pip install -q numpy==1.26.4 * pip install -q vllm==0.6.4 ```python from vllm import LLM, SamplingParams import torch import json dir = "." from datasets import load_dataset data_files = {"test": dir + "/elyza-tasks-100-TV_0.jsonl"} tasks = load_dataset("json", data_files=data_files, split="test") id = "llm-jp-3-13b-it-bs4-ac10-step251-fp8" from huggingface_hub import snapshot_download model_id = snapshot_download(repo_id="jaked97/" + id) prompts = [ f"""### instruction: あなたは親切なAIアシスタントです。 ### input: {input} ### output: """ for input in tasks["input"]] llm = LLM( model=model_id, gpu_memory_utilization=0.95, quantization="compressed-tensors", trust_remote_code=True, enforce_eager=True, ) # 推論の実行 outputs = llm.generate( prompts, sampling_params = SamplingParams( temperature=0, max_tokens=512, repetition_penalty=1.2, skip_special_tokens=True, seed=97, ), ) # jsonlで保存 with open(dir + f"/{id}_max512-vllm.jsonl", 'w', encoding='utf-8') as f: for i in range(len(outputs)): result = { "task_id" : tasks[i]["task_id"], "input" : tasks[i]["input"], "output" : outputs[i].outputs[0].text } json.dump(result, f, ensure_ascii=False) f.write('\n') ``` # Model Card for Model ID ## Model Details ### Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]