jadechoghari
commited on
Create vae.py
Browse files
vae.py
ADDED
@@ -0,0 +1,490 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adopted from LDM's KL-VAE: https://github.com/CompVis/latent-diffusion
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
|
8 |
+
def nonlinearity(x):
|
9 |
+
# swish
|
10 |
+
return x * torch.sigmoid(x)
|
11 |
+
|
12 |
+
|
13 |
+
def Normalize(in_channels, num_groups=32):
|
14 |
+
return torch.nn.GroupNorm(
|
15 |
+
num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True
|
16 |
+
)
|
17 |
+
|
18 |
+
|
19 |
+
class Upsample(nn.Module):
|
20 |
+
def __init__(self, in_channels, with_conv):
|
21 |
+
super().__init__()
|
22 |
+
self.with_conv = with_conv
|
23 |
+
if self.with_conv:
|
24 |
+
self.conv = torch.nn.Conv2d(
|
25 |
+
in_channels, in_channels, kernel_size=3, stride=1, padding=1
|
26 |
+
)
|
27 |
+
|
28 |
+
def forward(self, x):
|
29 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
30 |
+
if self.with_conv:
|
31 |
+
x = self.conv(x)
|
32 |
+
return x
|
33 |
+
|
34 |
+
|
35 |
+
class Downsample(nn.Module):
|
36 |
+
def __init__(self, in_channels, with_conv):
|
37 |
+
super().__init__()
|
38 |
+
self.with_conv = with_conv
|
39 |
+
if self.with_conv:
|
40 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
41 |
+
self.conv = torch.nn.Conv2d(
|
42 |
+
in_channels, in_channels, kernel_size=3, stride=2, padding=0
|
43 |
+
)
|
44 |
+
|
45 |
+
def forward(self, x):
|
46 |
+
if self.with_conv:
|
47 |
+
pad = (0, 1, 0, 1)
|
48 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
49 |
+
x = self.conv(x)
|
50 |
+
else:
|
51 |
+
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
52 |
+
return x
|
53 |
+
|
54 |
+
|
55 |
+
class ResnetBlock(nn.Module):
|
56 |
+
def __init__(
|
57 |
+
self,
|
58 |
+
*,
|
59 |
+
in_channels,
|
60 |
+
out_channels=None,
|
61 |
+
conv_shortcut=False,
|
62 |
+
dropout,
|
63 |
+
temb_channels=512,
|
64 |
+
):
|
65 |
+
super().__init__()
|
66 |
+
self.in_channels = in_channels
|
67 |
+
out_channels = in_channels if out_channels is None else out_channels
|
68 |
+
self.out_channels = out_channels
|
69 |
+
self.use_conv_shortcut = conv_shortcut
|
70 |
+
|
71 |
+
self.norm1 = Normalize(in_channels)
|
72 |
+
self.conv1 = torch.nn.Conv2d(
|
73 |
+
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
74 |
+
)
|
75 |
+
if temb_channels > 0:
|
76 |
+
self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
|
77 |
+
self.norm2 = Normalize(out_channels)
|
78 |
+
self.dropout = torch.nn.Dropout(dropout)
|
79 |
+
self.conv2 = torch.nn.Conv2d(
|
80 |
+
out_channels, out_channels, kernel_size=3, stride=1, padding=1
|
81 |
+
)
|
82 |
+
if self.in_channels != self.out_channels:
|
83 |
+
if self.use_conv_shortcut:
|
84 |
+
self.conv_shortcut = torch.nn.Conv2d(
|
85 |
+
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
86 |
+
)
|
87 |
+
else:
|
88 |
+
self.nin_shortcut = torch.nn.Conv2d(
|
89 |
+
in_channels, out_channels, kernel_size=1, stride=1, padding=0
|
90 |
+
)
|
91 |
+
|
92 |
+
def forward(self, x, temb):
|
93 |
+
h = x
|
94 |
+
h = self.norm1(h)
|
95 |
+
h = nonlinearity(h)
|
96 |
+
h = self.conv1(h)
|
97 |
+
|
98 |
+
if temb is not None:
|
99 |
+
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]
|
100 |
+
|
101 |
+
h = self.norm2(h)
|
102 |
+
h = nonlinearity(h)
|
103 |
+
h = self.dropout(h)
|
104 |
+
h = self.conv2(h)
|
105 |
+
|
106 |
+
if self.in_channels != self.out_channels:
|
107 |
+
if self.use_conv_shortcut:
|
108 |
+
x = self.conv_shortcut(x)
|
109 |
+
else:
|
110 |
+
x = self.nin_shortcut(x)
|
111 |
+
|
112 |
+
return x + h
|
113 |
+
|
114 |
+
|
115 |
+
class AttnBlock(nn.Module):
|
116 |
+
def __init__(self, in_channels):
|
117 |
+
super().__init__()
|
118 |
+
self.in_channels = in_channels
|
119 |
+
|
120 |
+
self.norm = Normalize(in_channels)
|
121 |
+
self.q = torch.nn.Conv2d(
|
122 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
123 |
+
)
|
124 |
+
self.k = torch.nn.Conv2d(
|
125 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
126 |
+
)
|
127 |
+
self.v = torch.nn.Conv2d(
|
128 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
129 |
+
)
|
130 |
+
self.proj_out = torch.nn.Conv2d(
|
131 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
132 |
+
)
|
133 |
+
|
134 |
+
def forward(self, x):
|
135 |
+
h_ = x
|
136 |
+
h_ = self.norm(h_)
|
137 |
+
q = self.q(h_)
|
138 |
+
k = self.k(h_)
|
139 |
+
v = self.v(h_)
|
140 |
+
|
141 |
+
# compute attention
|
142 |
+
b, c, h, w = q.shape
|
143 |
+
q = q.reshape(b, c, h * w)
|
144 |
+
q = q.permute(0, 2, 1) # b,hw,c
|
145 |
+
k = k.reshape(b, c, h * w) # b,c,hw
|
146 |
+
w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
147 |
+
w_ = w_ * (int(c) ** (-0.5))
|
148 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
149 |
+
|
150 |
+
# attend to values
|
151 |
+
v = v.reshape(b, c, h * w)
|
152 |
+
w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q)
|
153 |
+
h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
154 |
+
h_ = h_.reshape(b, c, h, w)
|
155 |
+
|
156 |
+
h_ = self.proj_out(h_)
|
157 |
+
|
158 |
+
return x + h_
|
159 |
+
|
160 |
+
|
161 |
+
class Encoder(nn.Module):
|
162 |
+
def __init__(
|
163 |
+
self,
|
164 |
+
*,
|
165 |
+
ch=128,
|
166 |
+
out_ch=3,
|
167 |
+
ch_mult=(1, 1, 2, 2, 4),
|
168 |
+
num_res_blocks=2,
|
169 |
+
attn_resolutions=(16,),
|
170 |
+
dropout=0.0,
|
171 |
+
resamp_with_conv=True,
|
172 |
+
in_channels=3,
|
173 |
+
resolution=256,
|
174 |
+
z_channels=16,
|
175 |
+
double_z=True,
|
176 |
+
**ignore_kwargs,
|
177 |
+
):
|
178 |
+
super().__init__()
|
179 |
+
self.ch = ch
|
180 |
+
self.temb_ch = 0
|
181 |
+
self.num_resolutions = len(ch_mult)
|
182 |
+
self.num_res_blocks = num_res_blocks
|
183 |
+
self.resolution = resolution
|
184 |
+
self.in_channels = in_channels
|
185 |
+
|
186 |
+
# downsampling
|
187 |
+
self.conv_in = torch.nn.Conv2d(
|
188 |
+
in_channels, self.ch, kernel_size=3, stride=1, padding=1
|
189 |
+
)
|
190 |
+
|
191 |
+
curr_res = resolution
|
192 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
193 |
+
self.down = nn.ModuleList()
|
194 |
+
for i_level in range(self.num_resolutions):
|
195 |
+
block = nn.ModuleList()
|
196 |
+
attn = nn.ModuleList()
|
197 |
+
block_in = ch * in_ch_mult[i_level]
|
198 |
+
block_out = ch * ch_mult[i_level]
|
199 |
+
for i_block in range(self.num_res_blocks):
|
200 |
+
block.append(
|
201 |
+
ResnetBlock(
|
202 |
+
in_channels=block_in,
|
203 |
+
out_channels=block_out,
|
204 |
+
temb_channels=self.temb_ch,
|
205 |
+
dropout=dropout,
|
206 |
+
)
|
207 |
+
)
|
208 |
+
block_in = block_out
|
209 |
+
if curr_res in attn_resolutions:
|
210 |
+
attn.append(AttnBlock(block_in))
|
211 |
+
down = nn.Module()
|
212 |
+
down.block = block
|
213 |
+
down.attn = attn
|
214 |
+
if i_level != self.num_resolutions - 1:
|
215 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
216 |
+
curr_res = curr_res // 2
|
217 |
+
self.down.append(down)
|
218 |
+
|
219 |
+
# middle
|
220 |
+
self.mid = nn.Module()
|
221 |
+
self.mid.block_1 = ResnetBlock(
|
222 |
+
in_channels=block_in,
|
223 |
+
out_channels=block_in,
|
224 |
+
temb_channels=self.temb_ch,
|
225 |
+
dropout=dropout,
|
226 |
+
)
|
227 |
+
self.mid.attn_1 = AttnBlock(block_in)
|
228 |
+
self.mid.block_2 = ResnetBlock(
|
229 |
+
in_channels=block_in,
|
230 |
+
out_channels=block_in,
|
231 |
+
temb_channels=self.temb_ch,
|
232 |
+
dropout=dropout,
|
233 |
+
)
|
234 |
+
|
235 |
+
# end
|
236 |
+
self.norm_out = Normalize(block_in)
|
237 |
+
self.conv_out = torch.nn.Conv2d(
|
238 |
+
block_in,
|
239 |
+
2 * z_channels if double_z else z_channels,
|
240 |
+
kernel_size=3,
|
241 |
+
stride=1,
|
242 |
+
padding=1,
|
243 |
+
)
|
244 |
+
|
245 |
+
def forward(self, x):
|
246 |
+
# assert x.shape[2] == x.shape[3] == self.resolution, "{}, {}, {}".format(x.shape[2], x.shape[3], self.resolution)
|
247 |
+
|
248 |
+
# timestep embedding
|
249 |
+
temb = None
|
250 |
+
|
251 |
+
# downsampling
|
252 |
+
hs = [self.conv_in(x)]
|
253 |
+
for i_level in range(self.num_resolutions):
|
254 |
+
for i_block in range(self.num_res_blocks):
|
255 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
256 |
+
if len(self.down[i_level].attn) > 0:
|
257 |
+
h = self.down[i_level].attn[i_block](h)
|
258 |
+
hs.append(h)
|
259 |
+
if i_level != self.num_resolutions - 1:
|
260 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
261 |
+
|
262 |
+
# middle
|
263 |
+
h = hs[-1]
|
264 |
+
h = self.mid.block_1(h, temb)
|
265 |
+
h = self.mid.attn_1(h)
|
266 |
+
h = self.mid.block_2(h, temb)
|
267 |
+
|
268 |
+
# end
|
269 |
+
h = self.norm_out(h)
|
270 |
+
h = nonlinearity(h)
|
271 |
+
h = self.conv_out(h)
|
272 |
+
return h
|
273 |
+
|
274 |
+
|
275 |
+
class Decoder(nn.Module):
|
276 |
+
def __init__(
|
277 |
+
self,
|
278 |
+
*,
|
279 |
+
ch=128,
|
280 |
+
out_ch=3,
|
281 |
+
ch_mult=(1, 1, 2, 2, 4),
|
282 |
+
num_res_blocks=2,
|
283 |
+
attn_resolutions=(),
|
284 |
+
dropout=0.0,
|
285 |
+
resamp_with_conv=True,
|
286 |
+
in_channels=3,
|
287 |
+
resolution=256,
|
288 |
+
z_channels=16,
|
289 |
+
give_pre_end=False,
|
290 |
+
**ignore_kwargs,
|
291 |
+
):
|
292 |
+
super().__init__()
|
293 |
+
self.ch = ch
|
294 |
+
self.temb_ch = 0
|
295 |
+
self.num_resolutions = len(ch_mult)
|
296 |
+
self.num_res_blocks = num_res_blocks
|
297 |
+
self.resolution = resolution
|
298 |
+
self.in_channels = in_channels
|
299 |
+
self.give_pre_end = give_pre_end
|
300 |
+
|
301 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
302 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
303 |
+
block_in = ch * ch_mult[self.num_resolutions - 1]
|
304 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
305 |
+
self.z_shape = (1, z_channels, curr_res, curr_res)
|
306 |
+
print(
|
307 |
+
"Working with z of shape {} = {} dimensions.".format(
|
308 |
+
self.z_shape, np.prod(self.z_shape)
|
309 |
+
)
|
310 |
+
)
|
311 |
+
|
312 |
+
# z to block_in
|
313 |
+
self.conv_in = torch.nn.Conv2d(
|
314 |
+
z_channels, block_in, kernel_size=3, stride=1, padding=1
|
315 |
+
)
|
316 |
+
|
317 |
+
# middle
|
318 |
+
self.mid = nn.Module()
|
319 |
+
self.mid.block_1 = ResnetBlock(
|
320 |
+
in_channels=block_in,
|
321 |
+
out_channels=block_in,
|
322 |
+
temb_channels=self.temb_ch,
|
323 |
+
dropout=dropout,
|
324 |
+
)
|
325 |
+
self.mid.attn_1 = AttnBlock(block_in)
|
326 |
+
self.mid.block_2 = ResnetBlock(
|
327 |
+
in_channels=block_in,
|
328 |
+
out_channels=block_in,
|
329 |
+
temb_channels=self.temb_ch,
|
330 |
+
dropout=dropout,
|
331 |
+
)
|
332 |
+
|
333 |
+
# upsampling
|
334 |
+
self.up = nn.ModuleList()
|
335 |
+
for i_level in reversed(range(self.num_resolutions)):
|
336 |
+
block = nn.ModuleList()
|
337 |
+
attn = nn.ModuleList()
|
338 |
+
block_out = ch * ch_mult[i_level]
|
339 |
+
for i_block in range(self.num_res_blocks + 1):
|
340 |
+
block.append(
|
341 |
+
ResnetBlock(
|
342 |
+
in_channels=block_in,
|
343 |
+
out_channels=block_out,
|
344 |
+
temb_channels=self.temb_ch,
|
345 |
+
dropout=dropout,
|
346 |
+
)
|
347 |
+
)
|
348 |
+
block_in = block_out
|
349 |
+
if curr_res in attn_resolutions:
|
350 |
+
attn.append(AttnBlock(block_in))
|
351 |
+
up = nn.Module()
|
352 |
+
up.block = block
|
353 |
+
up.attn = attn
|
354 |
+
if i_level != 0:
|
355 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
356 |
+
curr_res = curr_res * 2
|
357 |
+
self.up.insert(0, up) # prepend to get consistent order
|
358 |
+
|
359 |
+
# end
|
360 |
+
self.norm_out = Normalize(block_in)
|
361 |
+
self.conv_out = torch.nn.Conv2d(
|
362 |
+
block_in, out_ch, kernel_size=3, stride=1, padding=1
|
363 |
+
)
|
364 |
+
|
365 |
+
def forward(self, z):
|
366 |
+
# assert z.shape[1:] == self.z_shape[1:]
|
367 |
+
self.last_z_shape = z.shape
|
368 |
+
|
369 |
+
# timestep embedding
|
370 |
+
temb = None
|
371 |
+
|
372 |
+
# z to block_in
|
373 |
+
h = self.conv_in(z)
|
374 |
+
|
375 |
+
# middle
|
376 |
+
h = self.mid.block_1(h, temb)
|
377 |
+
h = self.mid.attn_1(h)
|
378 |
+
h = self.mid.block_2(h, temb)
|
379 |
+
|
380 |
+
# upsampling
|
381 |
+
for i_level in reversed(range(self.num_resolutions)):
|
382 |
+
for i_block in range(self.num_res_blocks + 1):
|
383 |
+
h = self.up[i_level].block[i_block](h, temb)
|
384 |
+
if len(self.up[i_level].attn) > 0:
|
385 |
+
h = self.up[i_level].attn[i_block](h)
|
386 |
+
if i_level != 0:
|
387 |
+
h = self.up[i_level].upsample(h)
|
388 |
+
|
389 |
+
# end
|
390 |
+
if self.give_pre_end:
|
391 |
+
return h
|
392 |
+
|
393 |
+
h = self.norm_out(h)
|
394 |
+
h = nonlinearity(h)
|
395 |
+
h = self.conv_out(h)
|
396 |
+
return h
|
397 |
+
|
398 |
+
|
399 |
+
class DiagonalGaussianDistribution(object):
|
400 |
+
def __init__(self, parameters, deterministic=False):
|
401 |
+
self.parameters = parameters
|
402 |
+
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
403 |
+
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
404 |
+
self.deterministic = deterministic
|
405 |
+
self.std = torch.exp(0.5 * self.logvar)
|
406 |
+
self.var = torch.exp(self.logvar)
|
407 |
+
if self.deterministic:
|
408 |
+
self.var = self.std = torch.zeros_like(self.mean).to(
|
409 |
+
device=self.parameters.device
|
410 |
+
)
|
411 |
+
|
412 |
+
def sample(self):
|
413 |
+
x = self.mean + self.std * torch.randn(self.mean.shape).to(
|
414 |
+
device=self.parameters.device
|
415 |
+
)
|
416 |
+
return x
|
417 |
+
|
418 |
+
def kl(self, other=None):
|
419 |
+
if self.deterministic:
|
420 |
+
return torch.Tensor([0.0])
|
421 |
+
else:
|
422 |
+
if other is None:
|
423 |
+
return 0.5 * torch.sum(
|
424 |
+
torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar,
|
425 |
+
dim=[1, 2, 3],
|
426 |
+
)
|
427 |
+
else:
|
428 |
+
return 0.5 * torch.sum(
|
429 |
+
torch.pow(self.mean - other.mean, 2) / other.var
|
430 |
+
+ self.var / other.var
|
431 |
+
- 1.0
|
432 |
+
- self.logvar
|
433 |
+
+ other.logvar,
|
434 |
+
dim=[1, 2, 3],
|
435 |
+
)
|
436 |
+
|
437 |
+
def nll(self, sample, dims=[1, 2, 3]):
|
438 |
+
if self.deterministic:
|
439 |
+
return torch.Tensor([0.0])
|
440 |
+
logtwopi = np.log(2.0 * np.pi)
|
441 |
+
return 0.5 * torch.sum(
|
442 |
+
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
443 |
+
dim=dims,
|
444 |
+
)
|
445 |
+
|
446 |
+
def mode(self):
|
447 |
+
return self.mean
|
448 |
+
|
449 |
+
|
450 |
+
class AutoencoderKL(nn.Module):
|
451 |
+
def __init__(self, embed_dim, ch_mult, use_variational=True, ckpt_path=None):
|
452 |
+
super().__init__()
|
453 |
+
self.encoder = Encoder(ch_mult=ch_mult, z_channels=embed_dim)
|
454 |
+
self.decoder = Decoder(ch_mult=ch_mult, z_channels=embed_dim)
|
455 |
+
self.use_variational = use_variational
|
456 |
+
mult = 2 if self.use_variational else 1
|
457 |
+
self.quant_conv = torch.nn.Conv2d(2 * embed_dim, mult * embed_dim, 1)
|
458 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, embed_dim, 1)
|
459 |
+
self.embed_dim = embed_dim
|
460 |
+
if ckpt_path is not None:
|
461 |
+
self.init_from_ckpt(ckpt_path)
|
462 |
+
|
463 |
+
def init_from_ckpt(self, path):
|
464 |
+
sd = torch.load(path, map_location="cpu")["model"]
|
465 |
+
msg = self.load_state_dict(sd, strict=False)
|
466 |
+
print("Loading pre-trained KL-VAE")
|
467 |
+
print("Missing keys:")
|
468 |
+
print(msg.missing_keys)
|
469 |
+
print("Unexpected keys:")
|
470 |
+
print(msg.unexpected_keys)
|
471 |
+
print(f"Restored from {path}")
|
472 |
+
|
473 |
+
def encode(self, x):
|
474 |
+
h = self.encoder(x)
|
475 |
+
moments = self.quant_conv(h)
|
476 |
+
if not self.use_variational:
|
477 |
+
moments = torch.cat((moments, torch.ones_like(moments)), 1)
|
478 |
+
posterior = DiagonalGaussianDistribution(moments)
|
479 |
+
return posterior
|
480 |
+
|
481 |
+
def decode(self, z):
|
482 |
+
z = self.post_quant_conv(z)
|
483 |
+
dec = self.decoder(z)
|
484 |
+
return dec
|
485 |
+
|
486 |
+
def forward(self, inputs, disable=True, train=True, optimizer_idx=0):
|
487 |
+
if train:
|
488 |
+
return self.training_step(inputs, disable, optimizer_idx)
|
489 |
+
else:
|
490 |
+
return self.validation_step(inputs, disable)
|