jadechoghari
commited on
Create pnp_utils.py
Browse files- pnp_utils.py +172 -0
pnp_utils.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
def seed_everything(seed):
|
7 |
+
torch.manual_seed(seed)
|
8 |
+
torch.cuda.manual_seed(seed)
|
9 |
+
random.seed(seed)
|
10 |
+
np.random.seed(seed)
|
11 |
+
|
12 |
+
def register_time(model, t):
|
13 |
+
# register current timestamp to each layer
|
14 |
+
down_res_dict = {0: [0, 1], 1: [0, 1], 2: [0, 1], 3: [0, 1]}
|
15 |
+
up_res_dict = {0:[0, 1, 2], 1: [0, 1, 2], 2: [0, 1, 2], 3: [0, 1, 2]}
|
16 |
+
for res in up_res_dict:
|
17 |
+
for block in up_res_dict[res]:
|
18 |
+
if hasattr(model.unet.up_blocks[res], "attentions"):
|
19 |
+
module = model.unet.up_blocks[res].attentions[block].transformer_blocks[0].attn1
|
20 |
+
setattr(module, 't', t)
|
21 |
+
module = model.unet.up_blocks[res].attentions[block].transformer_blocks[0].attn2
|
22 |
+
setattr(module, 't', t)
|
23 |
+
conv_module = model.unet.up_blocks[res].resnets[block]
|
24 |
+
setattr(conv_module, 't', t)
|
25 |
+
for res in down_res_dict:
|
26 |
+
for block in down_res_dict[res]:
|
27 |
+
if hasattr(model.unet.down_blocks[res], "attentions"):
|
28 |
+
module = model.unet.down_blocks[res].attentions[block].transformer_blocks[0].attn1
|
29 |
+
setattr(module, 't', t)
|
30 |
+
module = model.unet.down_blocks[res].attentions[block].transformer_blocks[0].attn2
|
31 |
+
setattr(module, 't', t)
|
32 |
+
conv_module = model.unet.down_blocks[res].resnets[block]
|
33 |
+
setattr(conv_module, 't', t)
|
34 |
+
module = model.unet.mid_block.attentions[0].transformer_blocks[0].attn1
|
35 |
+
setattr(module, 't', t)
|
36 |
+
module = model.unet.mid_block.attentions[0].transformer_blocks[0].attn2
|
37 |
+
setattr(module, 't', t)
|
38 |
+
|
39 |
+
def register_attention_control(model, injection_schedule, num_inputs):
|
40 |
+
def sa_forward(self):
|
41 |
+
to_out = self.to_out
|
42 |
+
if type(to_out) is torch.nn.modules.container.ModuleList:
|
43 |
+
to_out = self.to_out[0]
|
44 |
+
else:
|
45 |
+
to_out = self.to_out
|
46 |
+
|
47 |
+
def forward(x, encoder_hidden_states=None, attention_mask=None, **kwargs):
|
48 |
+
batch_size, sequence_length, dim = x.shape
|
49 |
+
h = self.heads
|
50 |
+
|
51 |
+
is_cross = encoder_hidden_states is not None
|
52 |
+
encoder_hidden_states = encoder_hidden_states if is_cross else x
|
53 |
+
|
54 |
+
v = self.to_v(encoder_hidden_states)
|
55 |
+
v = self.head_to_batch_dim(v)
|
56 |
+
|
57 |
+
if not is_cross and self.injection_schedule is not None and (
|
58 |
+
self.t in self.injection_schedule or self.t == 1000):
|
59 |
+
q = self.to_q(x)
|
60 |
+
k = self.to_k(encoder_hidden_states)
|
61 |
+
|
62 |
+
source_batch_size = int(q.shape[0] // num_inputs)
|
63 |
+
|
64 |
+
q = q[:source_batch_size]
|
65 |
+
k = k[:source_batch_size]
|
66 |
+
q = self.head_to_batch_dim(q)
|
67 |
+
k = self.head_to_batch_dim(k)
|
68 |
+
|
69 |
+
else:
|
70 |
+
q = self.to_q(x)
|
71 |
+
k = self.to_k(encoder_hidden_states)
|
72 |
+
q = self.head_to_batch_dim(q)
|
73 |
+
k = self.head_to_batch_dim(k)
|
74 |
+
|
75 |
+
sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale
|
76 |
+
|
77 |
+
if attention_mask is not None:
|
78 |
+
attention_mask = attention_mask.reshape(batch_size, -1)
|
79 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
80 |
+
attention_mask = attention_mask[:, None, :].repeat(h, 1, 1)
|
81 |
+
sim.masked_fill_(~attention_mask, max_neg_value)
|
82 |
+
|
83 |
+
# attention, what we cannot get enough of
|
84 |
+
attn = sim.softmax(dim=-1)
|
85 |
+
|
86 |
+
if not is_cross and self.injection_schedule is not None and (
|
87 |
+
self.t in self.injection_schedule or self.t == 1000):
|
88 |
+
# Inject attention map from source
|
89 |
+
# attn = torch.cat([attn] * num_inputs, dim = 0)
|
90 |
+
attn = attn.repeat(num_inputs, 1, 1)
|
91 |
+
|
92 |
+
out = torch.einsum("b i j, b j d -> b i d", attn, v)
|
93 |
+
out = self.batch_to_head_dim(out)
|
94 |
+
|
95 |
+
return to_out(out)
|
96 |
+
|
97 |
+
return forward
|
98 |
+
|
99 |
+
# we are injecting attention in blocks 4 - 11 of the decoder, so not in the first block of the lowest resolution
|
100 |
+
res_dict = {1: [1, 2], 2: [0, 1, 2], 3: [0, 1, 2]}
|
101 |
+
for res in res_dict:
|
102 |
+
for block in res_dict[res]:
|
103 |
+
module = model.unet.up_blocks[res].attentions[block].transformer_blocks[0].attn1
|
104 |
+
module.forward = sa_forward(module)
|
105 |
+
setattr(module, 'injection_schedule', injection_schedule)
|
106 |
+
print("[INFO-PnP] Register Source Attention QK Injection in Up Res", res_dict)
|
107 |
+
|
108 |
+
def register_conv_control(model, injection_schedule, num_inputs):
|
109 |
+
def conv_forward(self):
|
110 |
+
def forward(input_tensor, temb, **kwargs):
|
111 |
+
hidden_states = input_tensor
|
112 |
+
|
113 |
+
hidden_states = self.norm1(hidden_states)
|
114 |
+
hidden_states = self.nonlinearity(hidden_states)
|
115 |
+
|
116 |
+
if self.upsample is not None:
|
117 |
+
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
|
118 |
+
if hidden_states.shape[0] >= 64:
|
119 |
+
input_tensor = input_tensor.contiguous()
|
120 |
+
hidden_states = hidden_states.contiguous()
|
121 |
+
input_tensor = self.upsample(input_tensor)
|
122 |
+
hidden_states = self.upsample(hidden_states)
|
123 |
+
elif self.downsample is not None:
|
124 |
+
input_tensor = self.downsample(input_tensor)
|
125 |
+
hidden_states = self.downsample(hidden_states)
|
126 |
+
|
127 |
+
hidden_states = self.conv1(hidden_states)
|
128 |
+
|
129 |
+
if temb is not None:
|
130 |
+
temb = self.time_emb_proj(self.nonlinearity(temb))[
|
131 |
+
:, :, None, None]
|
132 |
+
|
133 |
+
if temb is not None and self.time_embedding_norm == "default":
|
134 |
+
hidden_states = hidden_states + temb
|
135 |
+
|
136 |
+
hidden_states = self.norm2(hidden_states)
|
137 |
+
|
138 |
+
if temb is not None and self.time_embedding_norm == "scale_shift":
|
139 |
+
scale, shift = torch.chunk(temb, 2, dim=1)
|
140 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
141 |
+
|
142 |
+
hidden_states = self.nonlinearity(hidden_states)
|
143 |
+
|
144 |
+
hidden_states = self.dropout(hidden_states)
|
145 |
+
hidden_states = self.conv2(hidden_states)
|
146 |
+
if self.injection_schedule is not None and (self.t in self.injection_schedule or self.t == 1000):
|
147 |
+
source_batch_size = int(hidden_states.shape[0] // num_inputs)
|
148 |
+
|
149 |
+
# inject unconditional
|
150 |
+
hidden_states[source_batch_size:2 *
|
151 |
+
source_batch_size] = hidden_states[:source_batch_size]
|
152 |
+
# inject conditional
|
153 |
+
if num_inputs > 2:
|
154 |
+
hidden_states[2 * source_batch_size:3 *
|
155 |
+
source_batch_size] = hidden_states[:source_batch_size]
|
156 |
+
|
157 |
+
|
158 |
+
if self.conv_shortcut is not None:
|
159 |
+
input_tensor = self.conv_shortcut(input_tensor)
|
160 |
+
|
161 |
+
output_tensor = (input_tensor + hidden_states) / \
|
162 |
+
self.output_scale_factor
|
163 |
+
|
164 |
+
return output_tensor
|
165 |
+
|
166 |
+
return forward
|
167 |
+
|
168 |
+
res_dict = {1: [1]}
|
169 |
+
conv_module = model.unet.up_blocks[1].resnets[1]
|
170 |
+
conv_module.forward = conv_forward(conv_module)
|
171 |
+
setattr(conv_module, 'injection_schedule', injection_schedule)
|
172 |
+
print("[INFO-PnP] Register Source Feature Injection in Up Res", res_dict)
|