jadechoghari commited on
Commit
7470108
·
verified ·
1 Parent(s): a051d95

Create patch.py

Browse files
Files changed (1) hide show
  1. patch.py +387 -0
patch.py ADDED
@@ -0,0 +1,387 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import time
3
+ from typing import Type, Dict, Any, Tuple, Callable
4
+
5
+ import numpy as np
6
+ from einops import rearrange
7
+ import torch
8
+ import torch.nn.functional as F
9
+
10
+ from . import merge
11
+ from .utils import isinstance_str, init_generator, join_frame, split_frame, func_warper, join_warper, split_warper
12
+
13
+
14
+ def compute_merge(module: torch.nn.Module, x: torch.Tensor, tome_info: Dict[str, Any]) -> Tuple[Callable, ...]:
15
+ original_h, original_w = tome_info["size"]
16
+ original_tokens = original_h * original_w
17
+ downsample = int(math.ceil(math.sqrt(original_tokens // x.shape[1])))
18
+
19
+ args = tome_info["args"]
20
+ generator = module.generator
21
+
22
+ # Frame Number and Token Number
23
+ fsize = x.shape[0] // args["batch_size"]
24
+ tsize = x.shape[1]
25
+
26
+ # Merge tokens in high resolution layers
27
+ if downsample <= args["max_downsample"]:
28
+
29
+ if args["generator"] is None:
30
+ args["generator"] = init_generator(x.device)
31
+ # module.generator = module.generator.manual_seed(123)
32
+ elif args["generator"].device != x.device:
33
+ args["generator"] = init_generator(x.device, fallback=args["generator"])
34
+
35
+ # Local Token Merging!
36
+
37
+ local_tokens = join_frame(x, fsize)
38
+ m_ls = [join_warper(fsize)]
39
+ u_ls = [split_warper(fsize)]
40
+ unm = 0
41
+ curF = fsize
42
+
43
+ # Recursive merge multi-frame tokens into one set. Such as 4->1 for 4 frames and 8->2->1 for 8 frames when target stride is 4.
44
+ while curF > 1:
45
+ m, u, ret_dict = merge.bipartite_soft_matching_randframe(
46
+ local_tokens, curF, args["local_merge_ratio"], unm, generator, args["target_stride"], args["align_batch"])
47
+ unm += ret_dict["unm_num"]
48
+ m_ls.append(m)
49
+ u_ls.append(u)
50
+ local_tokens = m(local_tokens)
51
+
52
+ # assert (x.shape[1] - unm) % tsize == 0
53
+ # Total token number = current frame number * per-frame token number + unmerged token number
54
+ curF = (local_tokens.shape[1] - unm) // tsize
55
+
56
+ merged_tokens = local_tokens
57
+
58
+ # Global Token Merging!
59
+ if args["merge_global"]:
60
+ if hasattr(module, "global_tokens") and module.global_tokens is not None:
61
+ # Merge local tokens with global tokens. Randomly determine merging destination.
62
+ if torch.rand(1, generator=generator, device=generator.device) > args["global_rand"]:
63
+ src_len = local_tokens.shape[1]
64
+ tokens = torch.cat(
65
+ [local_tokens, module.global_tokens.to(local_tokens)], dim=1)
66
+ local_chunk = 0
67
+ else:
68
+ src_len = module.global_tokens.shape[1]
69
+ tokens = torch.cat(
70
+ [module.global_tokens.to(local_tokens), local_tokens], dim=1)
71
+ local_chunk = 1
72
+
73
+ m, u, _ = merge.bipartite_soft_matching_2s(
74
+ tokens, src_len, args["global_merge_ratio"], args["align_batch"], unmerge_chunk=local_chunk)
75
+ merged_tokens = m(tokens)
76
+ m_ls.append(m)
77
+ u_ls.append(u)
78
+
79
+ # Update global tokens with unmerged local tokens. There should be a better way to do this.
80
+ module.global_tokens = u(merged_tokens).detach().clone().cpu()
81
+ else:
82
+ module.global_tokens = local_tokens.detach().clone().cpu()
83
+
84
+ m = func_warper(m_ls)
85
+ u = func_warper(u_ls[::-1])
86
+ else:
87
+ m, u = (merge.do_nothing, merge.do_nothing)
88
+ merged_tokens = x
89
+
90
+ # Return merge op, unmerge op, and merged tokens.
91
+ return m, u, merged_tokens
92
+
93
+
94
+ def make_tome_block(block_class: Type[torch.nn.Module]) -> Type[torch.nn.Module]:
95
+ """
96
+ Make a patched class on the fly so we don't have to import any specific modules.
97
+ This patch applies ToMe to the forward function of the block.
98
+ """
99
+
100
+ class ToMeBlock(block_class):
101
+ # Save for unpatching later
102
+ _parent = block_class
103
+
104
+ def _forward(self, x: torch.Tensor, context: torch.Tensor = None) -> torch.Tensor:
105
+ m_a, m_c, m_m, u_a, u_c, u_m = compute_merge(
106
+ self, x, self._tome_info)
107
+
108
+ # This is where the meat of the computation happens
109
+ x = u_a(self.attn1(m_a(self.norm1(x)),
110
+ context=context if self.disable_self_attn else None)) + x
111
+ x = u_c(self.attn2(m_c(self.norm2(x)), context=context)) + x
112
+ x = u_m(self.ff(m_m(self.norm3(x)))) + x
113
+
114
+ return x
115
+
116
+ return ToMeBlock
117
+
118
+
119
+ def make_diffusers_tome_block(block_class: Type[torch.nn.Module]) -> Type[torch.nn.Module]:
120
+ """
121
+ Make a patched class for a diffusers model.
122
+ This patch applies ToMe to the forward function of the block.
123
+ """
124
+ class ToMeBlock(block_class):
125
+ # Save for unpatching later
126
+ _parent = block_class
127
+
128
+ def forward(
129
+ self,
130
+ hidden_states,
131
+ attention_mask=None,
132
+ encoder_hidden_states=None,
133
+ encoder_attention_mask=None,
134
+ timestep=None,
135
+ cross_attention_kwargs=None,
136
+ class_labels=None,
137
+ ) -> torch.Tensor:
138
+
139
+ if self.use_ada_layer_norm:
140
+ norm_hidden_states = self.norm1(hidden_states, timestep)
141
+ elif self.use_ada_layer_norm_zero:
142
+ norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
143
+ hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
144
+ )
145
+ else:
146
+ norm_hidden_states = self.norm1(hidden_states)
147
+
148
+ # Merge input tokens
149
+ m_a, u_a, merged_tokens = compute_merge(
150
+ self, norm_hidden_states, self._tome_info)
151
+
152
+ norm_hidden_states = merged_tokens
153
+
154
+ # 1. Self-Attention
155
+ cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
156
+ # tt = time.time()
157
+ attn_output = self.attn1(
158
+ norm_hidden_states,
159
+ encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
160
+ attention_mask=attention_mask,
161
+ **cross_attention_kwargs,
162
+ )
163
+ # print(time.time() - tt)
164
+ if self.use_ada_layer_norm_zero:
165
+ attn_output = gate_msa.unsqueeze(1) * attn_output
166
+
167
+ # Unmerge output tokens
168
+ attn_output = u_a(attn_output)
169
+ hidden_states = attn_output + hidden_states
170
+
171
+ if self.attn2 is not None:
172
+ norm_hidden_states = (
173
+ self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(
174
+ hidden_states)
175
+ )
176
+
177
+ # 2. Cross-Attention
178
+ attn_output = self.attn2(
179
+ norm_hidden_states,
180
+ encoder_hidden_states=encoder_hidden_states,
181
+ attention_mask=encoder_attention_mask,
182
+ **cross_attention_kwargs,
183
+ )
184
+
185
+ hidden_states = attn_output + hidden_states
186
+
187
+ # 3. Feed-forward
188
+ norm_hidden_states = self.norm3(hidden_states)
189
+
190
+ if self.use_ada_layer_norm_zero:
191
+ norm_hidden_states = norm_hidden_states * \
192
+ (1 + scale_mlp[:, None]) + shift_mlp[:, None]
193
+
194
+ ff_output = self.ff(norm_hidden_states)
195
+
196
+ if self.use_ada_layer_norm_zero:
197
+ ff_output = gate_mlp.unsqueeze(1) * ff_output
198
+
199
+ hidden_states = ff_output + hidden_states
200
+
201
+ return hidden_states
202
+
203
+ return ToMeBlock
204
+
205
+
206
+ def hook_tome_model(model: torch.nn.Module):
207
+ """ Adds a forward pre hook to get the image size. This hook can be removed with remove_patch. """
208
+ def hook(module, args):
209
+ module._tome_info["size"] = (args[0].shape[2], args[0].shape[3])
210
+ return None
211
+
212
+ model._tome_info["hooks"].append(model.register_forward_pre_hook(hook))
213
+
214
+
215
+ def hook_tome_module(module: torch.nn.Module):
216
+ """ Adds a forward pre hook to initialize random number generator.
217
+ All modules share the same generator state to keep their randomness in VidToMe consistent in one pass.
218
+ This hook can be removed with remove_patch. """
219
+ def hook(module, args):
220
+ if not hasattr(module, "generator"):
221
+ module.generator = init_generator(args[0].device)
222
+ elif module.generator.device != args[0].device:
223
+ module.generator = init_generator(
224
+ args[0].device, fallback=module.generator)
225
+ else:
226
+ return None
227
+
228
+ # module.generator = module.generator.manual_seed(module._tome_info["args"]["seed"])
229
+ return None
230
+
231
+ module._tome_info["hooks"].append(module.register_forward_pre_hook(hook))
232
+
233
+
234
+ def apply_patch(
235
+ model: torch.nn.Module,
236
+ local_merge_ratio: float = 0.9,
237
+ merge_global: bool = False,
238
+ global_merge_ratio=0.8,
239
+ max_downsample: int = 2,
240
+ seed: int = 123,
241
+ batch_size: int = 2,
242
+ include_control: bool = False,
243
+ align_batch: bool = False,
244
+ target_stride: int = 4,
245
+ global_rand=0.5):
246
+ """
247
+ Patches a stable diffusion model with VidToMe.
248
+ Apply this to the highest level stable diffusion object (i.e., it should have a .model.diffusion_model).
249
+
250
+ Important Args:
251
+ - model: A top level Stable Diffusion module to patch in place. Should have a ".model.diffusion_model"
252
+ - local_merge_ratio: The ratio of tokens to merge locally. I.e., 0.9 would merge 90% src tokens.
253
+ If there are 4 frames in a chunk (3 src, 1 dst), the compression ratio will be 1.3 / 4.0.
254
+ And the largest compression ratio is 0.25 (when local_merge_ratio = 1.0).
255
+ Higher values result in more consistency, but with more visual quality loss.
256
+ - merge_global: Whether or not to include global token merging.
257
+ - global_merge_ratio: The ratio of tokens to merge locally. I.e., 0.8 would merge 80% src tokens.
258
+ When find significant degradation in video quality. Try to lower the value.
259
+
260
+ Args to tinker with if you want:
261
+ - max_downsample [1, 2, 4, or 8]: Apply VidToMe to layers with at most this amount of downsampling.
262
+ E.g., 1 only applies to layers with no downsampling (4/15) while
263
+ 8 applies to all layers (15/15). I recommend a value of 1 or 2.
264
+ - seed: Manual random seed.
265
+ - batch_size: Video batch size. Number of video chunks in one pass. When processing one video, it
266
+ should be 2 (cond + uncond) or 3 (when using PnP, source + cond + uncond).
267
+ - include_control: Whether or not to patch ControlNet model.
268
+ - align_batch: Whether or not to align similarity matching maps of samples in the batch. It should
269
+ be True when using PnP as control.
270
+ - target_stride: Stride between target frames. I.e., when target_stride = 4, there is 1 target frame
271
+ in any 4 consecutive frames.
272
+ - global_rand: Probability in global token merging src/dst split. Global tokens are always src when
273
+ global_rand = 1.0 and always dst when global_rand = 0.0 .
274
+ """
275
+
276
+ # Make sure the module is not currently patched
277
+ remove_patch(model)
278
+
279
+ is_diffusers = isinstance_str(
280
+ model, "DiffusionPipeline") or isinstance_str(model, "ModelMixin")
281
+
282
+ if not is_diffusers:
283
+ if not hasattr(model, "model") or not hasattr(model.model, "diffusion_model"):
284
+ # Provided model not supported
285
+ raise RuntimeError(
286
+ "Provided model was not a Stable Diffusion / Latent Diffusion model, as expected.")
287
+ diffusion_model = model.model.diffusion_model
288
+ else:
289
+ # Supports "pipe.unet" and "unet"
290
+ diffusion_model = model.unet if hasattr(model, "unet") else model
291
+
292
+ if isinstance_str(model, "StableDiffusionControlNetPipeline") and include_control:
293
+ diffusion_models = [diffusion_model, model.controlnet]
294
+ else:
295
+ diffusion_models = [diffusion_model]
296
+
297
+ for diffusion_model in diffusion_models:
298
+ diffusion_model._tome_info = {
299
+ "size": None,
300
+ "hooks": [],
301
+ "args": {
302
+ "max_downsample": max_downsample,
303
+ "generator": None,
304
+ "seed": seed,
305
+ "batch_size": batch_size,
306
+ "align_batch": align_batch,
307
+ "merge_global": merge_global,
308
+ "global_merge_ratio": global_merge_ratio,
309
+ "local_merge_ratio": local_merge_ratio,
310
+ "global_rand": global_rand,
311
+ "target_stride": target_stride
312
+ }
313
+ }
314
+ hook_tome_model(diffusion_model)
315
+
316
+ for name, module in diffusion_model.named_modules():
317
+ # If for some reason this has a different name, create an issue and I'll fix it
318
+ # if isinstance_str(module, "BasicTransformerBlock") and "down_blocks" not in name:
319
+ if isinstance_str(module, "BasicTransformerBlock"):
320
+ make_tome_block_fn = make_diffusers_tome_block if is_diffusers else make_tome_block
321
+ module.__class__ = make_tome_block_fn(module.__class__)
322
+ module._tome_info = diffusion_model._tome_info
323
+ hook_tome_module(module)
324
+
325
+ # Something introduced in SD 2.0 (LDM only)
326
+ if not hasattr(module, "disable_self_attn") and not is_diffusers:
327
+ module.disable_self_attn = False
328
+
329
+ # Something needed for older versions of diffusers
330
+ if not hasattr(module, "use_ada_layer_norm_zero") and is_diffusers:
331
+ module.use_ada_layer_norm = False
332
+ module.use_ada_layer_norm_zero = False
333
+
334
+ return model
335
+
336
+
337
+ def remove_patch(model: torch.nn.Module):
338
+ """ Removes a patch from a ToMe Diffusion module if it was already patched. """
339
+ # For diffusers
340
+
341
+ model = model.unet if hasattr(model, "unet") else model
342
+ model_ls = [model]
343
+ if hasattr(model, "controlnet"):
344
+ model_ls.append(model.controlnet)
345
+ for model in model_ls:
346
+ for _, module in model.named_modules():
347
+ if hasattr(module, "_tome_info"):
348
+ for hook in module._tome_info["hooks"]:
349
+ hook.remove()
350
+ module._tome_info["hooks"].clear()
351
+
352
+ if module.__class__.__name__ == "ToMeBlock":
353
+ module.__class__ = module._parent
354
+
355
+ return model
356
+
357
+
358
+ def update_patch(model: torch.nn.Module, **kwargs):
359
+ """ Update arguments in patched modules """
360
+ # For diffusers
361
+ model0 = model.unet if hasattr(model, "unet") else model
362
+ model_ls = [model0]
363
+ if hasattr(model, "controlnet"):
364
+ model_ls.append(model.controlnet)
365
+ for model in model_ls:
366
+ for _, module in model.named_modules():
367
+ if hasattr(module, "_tome_info"):
368
+ for k, v in kwargs.items():
369
+ setattr(module, k, v)
370
+ return model
371
+
372
+
373
+ def collect_from_patch(model: torch.nn.Module, attr="tome"):
374
+ """ Collect attributes in patched modules """
375
+ # For diffusers
376
+ model0 = model.unet if hasattr(model, "unet") else model
377
+ model_ls = [model0]
378
+ if hasattr(model, "controlnet"):
379
+ model_ls.append(model.controlnet)
380
+ ret_dict = dict()
381
+ for model in model_ls:
382
+ for name, module in model.named_modules():
383
+ if hasattr(module, attr):
384
+ res = getattr(module, attr)
385
+ ret_dict[name] = res
386
+
387
+ return ret_dict