--- datasets: - cjvt/si_nli language: - sl license: cc-by-sa-4.0 --- # CrossEncoder for Slovene NLI The model was trained using the [SentenceTransformers](https://sbert.net/) [CrossEncoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.
It is based on [SloBerta](https://huggingface.co/EMBEDDIA/sloberta), a monolingual Slovene model. ## Training This model was trained on the [SI-NLI](https://huggingface.co/datasets/cjvt/si_nli) dataset.
More details and the training script are available here: [repo](https://github.com/jacinthes/slovene-nli-benchmark) ## Performance The model achieves the following metrics: - Test accuracy: 75.95 - Dev accuracy: 75.14 ## Usage The model can be used for inference using the below code: ```python from sentence_transformers import CrossEncoder model = CrossEncoder('jacinthes/cross-encoder-sloberta-si-nli') premise = 'Pojdi z menoj v toplice.' hypothesis = 'Bova lepa bova fit.' prediction = model.predict([premise, hypothesis]) int2label = {0: 'entailment', 1: 'neutral', 2:'contradiction'} print(int2label[prediction.argmax()]) ```