--- library_name: transformers license: mit base_model: deepset/gbert-large tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: gbert-large-topic_classification results: [] --- # gbert-large-topic_classification This model is a fine-tuned version of [deepset/gbert-large](https://huggingface.co/deepset/gbert-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5093 - Precision: 0.9100 - Recall: 0.8993 - F1: 0.9042 - Accuracy: 0.9167 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 44 | 0.6465 | 0.8897 | 0.8138 | 0.8179 | 0.8480 | | No log | 2.0 | 88 | 0.2949 | 0.9116 | 0.9110 | 0.9106 | 0.9118 | | No log | 3.0 | 132 | 0.4110 | 0.9298 | 0.8939 | 0.9020 | 0.9167 | | No log | 4.0 | 176 | 0.6242 | 0.9261 | 0.8756 | 0.8911 | 0.9020 | | No log | 5.0 | 220 | 0.5606 | 0.9208 | 0.8757 | 0.8897 | 0.9020 | | No log | 6.0 | 264 | 0.6164 | 0.9201 | 0.8867 | 0.9001 | 0.9069 | | No log | 7.0 | 308 | 0.4898 | 0.9155 | 0.9001 | 0.9071 | 0.9167 | | No log | 8.0 | 352 | 0.4999 | 0.9191 | 0.9029 | 0.9102 | 0.9216 | | No log | 9.0 | 396 | 0.5073 | 0.9100 | 0.8993 | 0.9042 | 0.9167 | | No log | 10.0 | 440 | 0.5093 | 0.9100 | 0.8993 | 0.9042 | 0.9167 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1