--- language: - en - zh - de - es - ru - ko - fr - ja - pt - tr - pl - ca - nl - ar - sv - it - id - hi - fi - vi - he - uk - el - ms - cs - ro - da - hu - ta - 'no' - th - ur - hr - bg - lt - la - mi - ml - cy - sk - te - fa - lv - bn - sr - az - sl - kn - et - mk - br - eu - is - hy - ne - mn - bs - kk - sq - sw - gl - mr - pa - si - km - sn - yo - so - af - oc - ka - be - tg - sd - gu - am - yi - lo - uz - fo - ht - ps - tk - nn - mt - sa - lb - my - bo - tl - mg - as - tt - haw - ln - ha - ba - jw - su tags: - audio - automatic-speech-recognition - hf-asr-leaderboard widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac pipeline_tag: automatic-speech-recognition license: apache-2.0 datasets: - ivrit-ai/whisper-training --- **Note: If you are looking for our latest dataset and model, please refer to the main README here: https://huggingface.co/ivrit-ai.** # Whisper Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation. More details about it are available [here](https://huggingface.co/openai/whisper-large-v2). **whisper-v2-d3-e3** is a version of whisper-large-v2, fine-tuned by [ivrit.ai](https://www.ivrit.ai) to improve Hebrew ASR using crowd-sourced labeling. ## Model details This model comes as a single checkpoint, whisper-v2-d3-e3. It is a 1550M parameters multi-lingual ASR solution. # Usage To transcribe audio samples, the model has to be used alongside a [`WhisperProcessor`](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperProcessor). ```python import torch from transformers import WhisperProcessor, WhisperForConditionalGeneration SAMPLING_RATE = 16000 has_cuda = torch.cuda.is_available() model_path = 'ivrit-ai/whisper-v2-d3-e3' model = WhisperForConditionalGeneration.from_pretrained(model_path) if has_cuda: model.to('cuda:0') processor = WhisperProcessor.from_pretrained(model_path) # audio_resample based on entry being part of an existing dataset. # Alternatively, this can be loaded from an audio file. audio_resample = librosa.resample(entry['audio']['array'], orig_sr=entry['audio']['sampling_rate'], target_sr=SAMPLING_RATE) input_features = processor(audio_resample, sampling_rate=SAMPLING_RATE, return_tensors="pt").input_features if has_cuda: input_features = input_features.to('cuda:0') predicted_ids = model.generate(input_features, language='he', num_beams=5) transcript = processor.batch_decode(predicted_ids, skip_special_tokens=True) print(f'Transcript: {transcription[0]}') ``` ## Evaluation You can use the [evaluate_model.py](https://github.com/yairl/ivrit.ai/blob/master/evaluate_model.py) reference on GitHub to evalute the model's quality. ## Long-Form Transcription The Whisper model is intrinsically designed to work on audio samples of up to 30s in duration. However, by using a chunking algorithm, it can be used to transcribe audio samples of up to arbitrary length. This is possible through Transformers [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline) method. Chunking is enabled by setting `chunk_length_s=30` when instantiating the pipeline. With chunking enabled, the pipeline can be run with batched inference. It can also be extended to predict sequence level timestamps by passing `return_timestamps=True`: ```python >>> import torch >>> from transformers import pipeline >>> from datasets import load_dataset >>> device = "cuda:0" if torch.cuda.is_available() else "cpu" >>> pipe = pipeline( >>> "automatic-speech-recognition", >>> model="ivrit-ai/whisper-v2-d3-e3", >>> chunk_length_s=30, >>> device=device, >>> ) >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> sample = ds[0]["audio"] >>> prediction = pipe(sample.copy(), batch_size=8)["text"] " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel." >>> # we can also return timestamps for the predictions >>> prediction = pipe(sample.copy(), batch_size=8, return_timestamps=True)["chunks"] [{'text': ' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.', 'timestamp': (0.0, 5.44)}] ``` Refer to the blog post [ASR Chunking](https://huggingface.co/blog/asr-chunking) for more details on the chunking algorithm. ### BibTeX entry and citation info **ivrit.ai: A Comprehensive Dataset of Hebrew Speech for AI Research and Development** ```bibtex @misc{marmor2023ivritai, title={ivrit.ai: A Comprehensive Dataset of Hebrew Speech for AI Research and Development}, author={Yanir Marmor and Kinneret Misgav and Yair Lifshitz}, year={2023}, eprint={2307.08720}, archivePrefix={arXiv}, primaryClass={eess.AS} } ``` **Whisper: Robust Speech Recognition via Large-Scale Weak Supervision** ```bibtex @misc{radford2022whisper, doi = {10.48550/ARXIV.2212.04356}, url = {https://arxiv.org/abs/2212.04356}, author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya}, title = {Robust Speech Recognition via Large-Scale Weak Supervision}, publisher = {arXiv}, year = {2022}, copyright = {arXiv.org perpetual, non-exclusive license} } ```