File size: 1,665 Bytes
2d48621 95c84d8 2d48621 95c84d8 2d48621 95c84d8 2d48621 1c396e6 2d48621 1c396e6 2d48621 95c84d8 2d48621 95c84d8 2d48621 95c84d8 2d48621 95c84d8 2d48621 95c84d8 2d48621 95c84d8 2d48621 95c84d8 2d48621 95c84d8 2d48621 95c84d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
---
license: llama3.2
language:
- en
inference: false
fine-tuning: false
tags:
- nvidia
- llama3.2
datasets:
- nvidia/HelpSteer2
base_model: unsloth/Llama-3.2-3B-bnb-4bit
pipeline_tag: text-generation
library_name: transformers
---
# 🍷 Llama-3.2-Nemotron-3B
This is a finetune of [meta-llama/Llama-3.2-3B](https://huggingface.co/meta-llama/Llama-3.2-3B) (specifically, [unsloth/Llama-3.2-3B-bnb-4bit](https://huggingface.co/unsloth/Llama-3.2-3B-bnb-4bit)).
It was trained on the [nvidia/HelpSteer2](https://huggingface.co/datasets/nvidia/HelpSteer2) dataset, similar to [nvidia/Llama-3.1-Nemotron-70B-Instruct-HF](https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF), using Unsloth.
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "itsnebulalol/Llama-3.2-Nemotron-3B"
messages = [{"role": "user", "content": "How many r in strawberry?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
---
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |