--- license: llama3.2 language: - en inference: false fine-tuning: false tags: - nvidia - llama3.2 datasets: - nvidia/HelpSteer2 base_model: unsloth/Llama-3.2-3B-Instruct-bnb-4bit pipeline_tag: text-generation library_name: transformers --- # 🍷 Llama-3.2-Nemotron-3B-Instruct This is a finetune of [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) (specifically, [unsloth/Llama-3.2-3B-Instruct-bnb-4bit](https://huggingface.co/unsloth/Llama-3.2-3B-Instruct-bnb-4bit)). It was trained on the [nvidia/HelpSteer2](https://huggingface.co/datasets/nvidia/HelpSteer2) dataset, similar to [nvidia/Llama-3.1-Nemotron-70B-Instruct-HF](https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF), using Unsloth. ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "itsnebulalol/Llama-3.2-Nemotron-3B-Instruct" messages = [{"role": "user", "content": "How many r in strawberry?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` --- This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth)