SDPrompt-RetNet-300M / configuration_retnet.py
p1atdev's picture
Upload RetNetForCausalLM
71b8d08
# by syncdoth: https://github.com/syncdoth/RetNet/blob/main/retnet/configuration_retnet.py
from dataclasses import dataclass
import json
from transformers.configuration_utils import PretrainedConfig
def load_config_from_json(config_file):
with open(config_file, "r") as f:
config = json.load(f)
config = RetNetConfig.from_dict(config)
return config
@dataclass
class RetNetConfig(PretrainedConfig):
model_type = "retnet"
initializer_range: float = 0.02
activation_fn: str = "gelu"
dropout: float = 0.0 # dropout probability
activation_dropout: float = 0.0 # dropout probability after activation in FFN.
drop_path_rate: float = 0.0
decoder_embed_dim: int = 768 # decoder embedding dimension
decoder_value_embed_dim: int = 1280 # decoder value embedding dimension
decoder_ffn_embed_dim: int = 1280 # decoder embedding dimension for FFN
decoder_layers: int = 12 # num decoder layers
decoder_retention_heads: int = 3 # num decoder retention heads
decoder_normalize_before: bool = True # apply layernorm before each decoder block
layernorm_embedding: bool = False # add layernorm to embedding
no_scale_embedding: bool = True # if True, dont scale embeddings
recurrent_chunk_size: int = 512
use_lm_decay: bool = False
use_glu: bool = True # use GLU instead of FFN
z_loss_coeff: float = 0.0 # coefficient for z loss: TODO: 1e-4
deepnorm: bool = False
subln: bool = True
use_ffn_rms_norm: bool = False
layernorm_eps: float = 1e-6
tie_word_embeddings: bool = False
def __init__(
self,
vocab_size: int = 50257,
initializer_range: float = 0.02,
is_decoder: bool = True,
pad_token_id: int = 0,
eos_token_id: int = 0,
output_retentions: bool = False,
use_cache: bool = True,
forward_impl: str = "parallel",
activation_fn: str = "gelu",
dropout: float = 0.0, # dropout probability
activation_dropout: float = 0.0, # dropout probability after activation in FFN.
drop_path_rate: float = 0.0,
decoder_embed_dim: int = 768, # decoder embedding dimension
decoder_value_embed_dim: int = 1280, # decoder value embedding dimension
decoder_ffn_embed_dim: int = 1280, # decoder embedding dimension for FFN
decoder_layers: int = 12, # num decoder layers
decoder_retention_heads: int = 3, # num decoder retention heads
decoder_normalize_before: bool = True, # apply layernorm before each decoder block
layernorm_embedding: bool = False, # add layernorm to embedding
no_scale_embedding: bool = True, # if True, dont scale embeddings
recurrent_chunk_size: int = 512,
use_glu: bool = True, # use GLU instead of FFN
z_loss_coeff: float = 0.0, # coefficient for z loss: TODO: 1e-4
use_lm_decay: bool = False,
deepnorm: bool = False,
subln: bool = True,
use_ffn_rms_norm: bool = False, # use RMSNorm instead of LayerNorm in FFN
layernorm_eps: float = 1e-6,
tie_word_embeddings: bool = False,
**kwargs
):
self.vocab_size = vocab_size
self.initializer_range = initializer_range
self.output_retentions = output_retentions
self.use_lm_decay = use_lm_decay
self.use_glu = use_glu
self.z_loss_coeff = z_loss_coeff
# size related
self.decoder_embed_dim = decoder_embed_dim
self.decoder_value_embed_dim = decoder_value_embed_dim
self.decoder_retention_heads = decoder_retention_heads
self.decoder_ffn_embed_dim = decoder_ffn_embed_dim
self.decoder_layers = decoder_layers
# normalization related
self.decoder_normalize_before = decoder_normalize_before
self.activation_fn = activation_fn
self.dropout = dropout
self.drop_path_rate = drop_path_rate
self.activation_dropout = activation_dropout
self.no_scale_embedding = no_scale_embedding
self.layernorm_embedding = layernorm_embedding
self.deepnorm = deepnorm
self.subln = subln
self.use_ffn_rms_norm = use_ffn_rms_norm
self.layernorm_eps = layernorm_eps
# Blockwise
self.recurrent_chunk_size = recurrent_chunk_size
self.forward_impl = forward_impl
if self.deepnorm:
self.decoder_normalize_before = False
self.subln = False
if self.subln:
self.decoder_normalize_before = True
self.deepnorm = False
super().__init__(
is_decoder=is_decoder,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
use_cache=use_cache,
tie_word_embeddings=tie_word_embeddings,
**kwargs
)
def override(self, args):
for hp in self.__dict__.keys():
if getattr(args, hp, None) is not None:
self.__dict__[hp] = getattr(args, hp, None)