training a model on local pc
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +110 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 307.08 +/- 6.52
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3ed4957490>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3ed4957520>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3ed49575b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3ed4957640>", "_build": "<function ActorCriticPolicy._build at 0x7f3ed49576d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f3ed4957760>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3ed49577f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3ed4957880>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3ed4957910>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3ed49579a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3ed4957a30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3ed4bf2640>"}, "verbose": false, "policy_kwargs": {"net_arch": [{"pi": [128, 128], "vf": [128, 128]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 64, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652210309.385881, "learning_rate": {":type:": "<class 'function'>", ":serialized:": "gAWVyQEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwJLQ0MIZAF8ABQAUwCUTkc/aJN0vGp++oaUKYwBeJSFlIwiL3RtcC9pcHlrZXJuZWxfMTQxNjEvMzgxMTMwMzA5Mi5weZSMCDxsYW1iZGE+lEsGQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBd9lH2UKGgUaA6MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "tensorboard_log": "logs/07_batch_size/batch_size_4096", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVyQEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwJLQ0MIZAF8ABQAUwCUTkc/aJN0vGp++oaUKYwBeJSFlIwiL3RtcC9pcHlrZXJuZWxfMTQxNjEvMzgxMTMwMzA5Mi5weZSMCDxsYW1iZGE+lEsGQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBd9lH2UKGgUaA6MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAJoPwbxIr5i6hRdZvp3Xtzge5pQ6E18muAAAgD8AAIA/0/Q+PjzIHz7Ykty+xUUKv3insT2XrJq+AAAAAAAAAABADpc9Zjy7P8qNqD6qnjK+wjGAPQXBjD0AAAAAAAAAAJM0jD4ZjWI/BmswPuClML/e9vc+IjiyPQAAAAAAAAAAurQjvjHNUj96kL2+SolhvzYBqb5idPW9AAAAAAAAAAAz8z67UsmkP42UCLzqDQq/eMKDPB7hU7sAAAAAAAAAABoJQD5sUKU+Nf4+vg0OK78GSz8+UM5CvgAAAAAAAAAAWk7Rvbp9YD5nDjY+fu0hv1sbbb14WQk+AAAAAAAAAADzpju+oMKnPmpslT2ywD6/rhY2vvCDCD4AAAAAAAAAALM29T2Y/qI9B1ADvsdmlL6JY+w9qHIcvQAAAAAAAAAAc7ylvVyHe7rea1M28/YaMWxUCjuy3oK1AACAPwAAgD+A/Oo9LuDYO4sBxL7XTFO+4PuJvTwYkb4AAAAAAAAAAJoNbrzMcKk/yjZHvgkYIr/N6MC7/pSGvQAAAAAAAAAAc72YvY/yO7pT2Ac+53KBvCPomTsE6q49AACAPwAAAAAATgm99thvutDpNT7JaYG4nN43O2a+brcAAIA/AACAPzPTILu7laI+oZSIPXXTRb/RZGU9UlTzPQAAAAAAAAAAmnGQPFe1oz/ellc95+kUv5eusTsuv+A8AAAAAAAAAACACxm+PKxRPzr/Mr4wTV+/9EiAvm5vwr0AAAAAAAAAAJpocz2DByO8sGdqvvy/Dj1Esy89by03OgAAgD8AAIA/Zl6NPeD4iD6icG+8bZIxv2G8MD3aILu7AAAAAAAAAACaHS+87z6pPxa4db1CXea+b60Wu9yyQr0AAAAAAAAAACAlJD4U6pk/Y9iiPkdNSb/OTSQ+Yth5PgAAAAAAAAAAZlp/Prb0QT9mJAo987hLv4rT0z5OB2y9AAAAAAAAAABNx749rhmvupIoATPinoSwr1SRubKmvLMAAIA/AACAP82UPLxriYo/UppXvfSPYL9u2VI8BZBxPQAAAAAAAAAAI4Brvt5kwz4D68K8PxtCv1TlnL4NH809AAAAAAAAAABGwbc+EvA1P5iFlb3TxBy/9zUFPwR2Sb0AAAAAAAAAALOXwz1cw0K6Oq34u+QlNbOAlYi7OiJgMwAAgD8AAIA/E/gSvjwEEj3u5Mc+ZpF5vlQRij3+4p4+AAAAAAAAAABAo+89FEjIuq7S4brzbh44KqiQu113EzoAAIA/AACAP+3rKr42aps/yIeevrrCRb8EYxG+/papvgAAAAAAAAAAANyXO9bfvD/6o6w9hnupPiyZs7o38pq9AAAAAAAAAABAMqA+EygjP4P+6b2vRTC/SlD/PkqUIr4AAAAAAAAAAJqYwT1Iu566x4w1vQmzHbkrNyc6o0CNOAAAgD8AAIA/Go+AvdWXdD9dw8+90w1/v11Mp73Io4i9AAAAAAAAAAAAGpo9uF6oueLobjS2QKwvblUIPIoHm7MAAIA/AACAP5pWRz0puGG6PR/mNg5uRzKhDKa51IwGtgAAgD8AAIA/wF2rPQVujj/hVsI+K/Jqv1CaAD6M8II+AAAAAAAAAABmIj299uxkunZNRjQbCaYu3pKQu+ZhprMAAIA/AACAP6aOgT3UbLI/dsvAPnemfL7fFum8RCdCPQAAAAAAAAAAhpQPPjgNqrttV1g61RWBuGkX87yNV125AACAPwAAgD+zxwo+g40AvPqeJzxTPMm6WZZdvYTXqLsAAIA/AACAP1rgo71v8hI9v4vFPS0S4b72eRy9Pr/UPQAAAAAAAAAAmkYuPT2Aqj/aKP0+XOUHv2aZBTz/Yio+AAAAAAAAAADNBKK8yFetP2cWor5M9Pi+WG2YO8TrJL0AAAAAAAAAAPPl/r0oHIY/eNL/vmGnY7+HRnK+A+5/vgAAAAAAAAAAs1g1PXLjvT+LzKs+XhW1PdyQhLwKCgI6AAAAAAAAAADaJcm9zOnBPmW2u71ZY0a/B8SsvQPnOTwAAAAAAAAAABqK/73kt5g98cOdPvQM1L5bREi9P+MmPgAAAAAAAAAAMxKfvfacYLrd5065wEeEtWtqirr1a3I4AACAPwAAgD/mbwK9v+uvPw2/Hr93i8G+VK+VPAuDH7wAAAAAAAAAAEY2CD4noog/1dyVPp0jTb/f71Q+CtauPgAAAAAAAAAAAAzAOyz6tj+1fZU+Nw/NPghUrbvk6Bi9AAAAAAAAAABaHfk9RcjYPFI8pb4bwWG+b8vCvdLxb74AAAAAAAAAALO5dT0pCAy66g3aslI9TrFbMaU5SlyPMwAAgD8AAIA/WggZPg8GQrxeL3K6nHaIOOoVsL3GG6I5AACAPwAAgD+mi7o911Yuu9O4DL5CUSA9n3TBvNzTBT4AAIA/AACAP00Tfj1Mg8A/gJC0Pq+z9jxqYGu8cswRPQAAAAAAAAAAzQsLvotEmj+XWLi+7AEyv34SJ76+4Mq+AAAAAAAAAABAP869H6jBP1/SHL/336o9ePnVO8v5eb0AAAAAAAAAAMC90b0KeWA/feFyvqM6e78IhVy+WvyDvQAAAAAAAAAAIE16vlAZgT5Q99c+hNkivwWvTL7USqY+AAAAAAAAAADNwY294S6xP7zsKr+dAHS+xabmO8m5sr0AAAAAAAAAAFDgU74TuiQ/+zvQvcxELL9VBLi+YJfvOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1EZ1OpAqckCUhpRSlIwBbJRLrowBdJRHQLxfEC9RJmN1fZQoaAZoCWgPQwi/1xAc151xQJSGlFKUaBVLrmgWR0C8Xxzz3AVPdX2UKGgGaAloD0MIJVmHo6vYZECUhpRSlGgVTegDaBZHQLxfNubI91V1fZQoaAZoCWgPQwiG/3QDxZVyQJSGlFKUaBVLo2gWR0C8Xz730wrUdX2UKGgGaAloD0MIya60jFQDaECUhpRSlGgVTegDaBZHQLxfPwUQCjl1fZQoaAZoCWgPQwgTu7a3WzdyQJSGlFKUaBVLomgWR0C8Xz7lJYkndX2UKGgGaAloD0MIYFeTp6wldECUhpRSlGgVS8RoFkdAvF9UhbGFSXV9lChoBmgJaA9DCFg4SfNHKnJAlIaUUpRoFUt/aBZHQLxfWAprk811fZQoaAZoCWgPQwg/WMaGbixxQJSGlFKUaBVLqGgWR0C8X2wzHjp+dX2UKGgGaAloD0MIH4ZWJ6chcUCUhpRSlGgVS6RoFkdAvF9xgpjMFHV9lChoBmgJaA9DCPIiE/CrTXBAlIaUUpRoFUuNaBZHQLxfd07KaG51fZQoaAZoCWgPQwiZm29Ed/dzQJSGlFKUaBVLrWgWR0C8X5LH+6y0dX2UKGgGaAloD0MI/RUyVwZuckCUhpRSlGgVS6ZoFkdAvF+XcSGrS3V9lChoBmgJaA9DCFe1pKPcnnJAlIaUUpRoFUuoaBZHQLxflmaYu011fZQoaAZoCWgPQwjGpSpt8WJwQJSGlFKUaBVLhGgWR0C8X5U1/DtPdX2UKGgGaAloD0MIg6EOK5xHcUCUhpRSlGgVS7JoFkdAvF+gpw0fo3V9lChoBmgJaA9DCJWfVPu0g3FAlIaUUpRoFUuhaBZHQLxftImw7kp1fZQoaAZoCWgPQwgHt7WFJ+pzQJSGlFKUaBVLuWgWR0C8X7gHu7YkdX2UKGgGaAloD0MILXsS2NxGcUCUhpRSlGgVS6BoFkdAvF+972L5ynV9lChoBmgJaA9DCMizy7f+gnJAlIaUUpRoFUueaBZHQLxfwGTcIqt1fZQoaAZoCWgPQwhHkEqxY+JyQJSGlFKUaBVLwWgWR0C8X8BqO939dX2UKGgGaAloD0MIKSMuAM1ncECUhpRSlGgVS49oFkdAvF/LXsgMdHV9lChoBmgJaA9DCJfiqrIv2HNAlIaUUpRoFUueaBZHQLxfzqvNeMR1fZQoaAZoCWgPQwgvFobI6WxzQJSGlFKUaBVLoWgWR0C8X9LcGkeqdX2UKGgGaAloD0MIx4LCoAyHcUCUhpRSlGgVS3toFkdAvF/YejmCAnV9lChoBmgJaA9DCKOvIM3YnXJAlIaUUpRoFUueaBZHQLxf4vnKW9l1fZQoaAZoCWgPQwjhlo+kpINxQJSGlFKUaBVLmGgWR0C8X+Ubo8p1dX2UKGgGaAloD0MI8uocAzJ8cECUhpRSlGgVS5NoFkdAvF/v0f5k9XV9lChoBmgJaA9DCHA+dazS4nJAlIaUUpRoFUuiaBZHQLxf8G+bmU51fZQoaAZoCWgPQwieYtUgTPpxQJSGlFKUaBVLqGgWR0C8X/tpM6BAdX2UKGgGaAloD0MIHJYGfhQAcUCUhpRSlGgVS5ZoFkdAvF/7N2TxG3V9lChoBmgJaA9DCHFV2XcF8HBAlIaUUpRoFUuHaBZHQLxf+t8eCCl1fZQoaAZoCWgPQwh6NUBp6NhxQJSGlFKUaBVLgWgWR0C8YAyiVSn+dX2UKGgGaAloD0MIwOjy5jB5ckCUhpRSlGgVS8ZoFkdAvGAQa0hNd3V9lChoBmgJaA9DCIWWdf8Yq3FAlIaUUpRoFUugaBZHQLxgEIMz/Id1fZQoaAZoCWgPQwj9TpMZL41xQJSGlFKUaBVLjWgWR0C8YBBllK9PdX2UKGgGaAloD0MII0kQrgA+cUCUhpRSlGgVS35oFkdAvGAVp0wJxHV9lChoBmgJaA9DCIup9BOOnXJAlIaUUpRoFUuwaBZHQLxgGM2m52B1fZQoaAZoCWgPQwiDiT+KOvBwQJSGlFKUaBVLoGgWR0C8YCHnp0OmdX2UKGgGaAloD0MIRu7p6o7yckCUhpRSlGgVS7FoFkdAvGAkpF1B+nV9lChoBmgJaA9DCAA49uy5m3FAlIaUUpRoFUuOaBZHQLxgI7I1cdJ1fZQoaAZoCWgPQwhs7uh/+X5zQJSGlFKUaBVLwWgWR0C8YCk5EMLGdX2UKGgGaAloD0MIWAOUhlpickCUhpRSlGgVS6toFkdAvGAsSpR4yHV9lChoBmgJaA9DCIdT5uZbNXNAlIaUUpRoFUu7aBZHQLxgMo2n8891fZQoaAZoCWgPQwiKraBpSaNyQJSGlFKUaBVLsGgWR0C8YDW6wt8NdX2UKGgGaAloD0MI492RsRq+cUCUhpRSlGgVS45oFkdAvGA+Cg9Ne3V9lChoBmgJaA9DCApJZvUOinNAlIaUUpRoFUu7aBZHQLxgPPjn3cp1fZQoaAZoCWgPQwjMmljgqx5zQJSGlFKUaBVLt2gWR0C8YGW9pRGddX2UKGgGaAloD0MIAAAAAMBFcUCUhpRSlGgVS6loFkdAvGBjDdgv13V9lChoBmgJaA9DCKjF4GEaUHFAlIaUUpRoFUuIaBZHQLxgaiMHbAV1fZQoaAZoCWgPQwj7yRgfZkBwQJSGlFKUaBVLgWgWR0C8YG8l9jPOdX2UKGgGaAloD0MIlPjcCbYdckCUhpRSlGgVS4toFkdAvGB+t4iX6nV9lChoBmgJaA9DCPHVjuIcEG9AlIaUUpRoFUuVaBZHQLxgxBg/keZ1fZQoaAZoCWgPQwhfsvFgC1NwQJSGlFKUaBVLo2gWR0C8YMeBg/kedX2UKGgGaAloD0MIyHpq9ZXzckCUhpRSlGgVS7hoFkdAvGDO1D0Dl3V9lChoBmgJaA9DCMdHizMGk3JAlIaUUpRoFUumaBZHQLxg1MKkVN51fZQoaAZoCWgPQwhaZ3xfnH5zQJSGlFKUaBVLx2gWR0C8YNNwBHTadX2UKGgGaAloD0MIjbgANArGcUCUhpRSlGgVS8FoFkdAvGDWo4uK43V9lChoBmgJaA9DCHhCrz9J2HJAlIaUUpRoFUu4aBZHQLxg3Jswco91fZQoaAZoCWgPQwgYP417cxpxQJSGlFKUaBVLnWgWR0C8YOdb1RLsdX2UKGgGaAloD0MI9+RhoZb6cUCUhpRSlGgVS7doFkdAvGDrZvkzXXV9lChoBmgJaA9DCIlBYOVQznBAlIaUUpRoFUuZaBZHQLxg9paiblR1fZQoaAZoCWgPQwhtOgK4GfJxQJSGlFKUaBVLe2gWR0C8YPTfWMCLdX2UKGgGaAloD0MIYkuPpnoMckCUhpRSlGgVS6doFkdAvGD4AT7EYXV9lChoBmgJaA9DCMyzklY8UHFAlIaUUpRoFUufaBZHQLxhAPp6hQF1fZQoaAZoCWgPQwjp19ZPP+lyQJSGlFKUaBVLnmgWR0C8YQViz9jxdX2UKGgGaAloD0MI0LUvoBe5cECUhpRSlGgVS7xoFkdAvGEHd43WF3V9lChoBmgJaA9DCHRAEvbtiHJAlIaUUpRoFUvZaBZHQLxhGPfsNUh1fZQoaAZoCWgPQwiVuI5xBbdxQJSGlFKUaBVLemgWR0C8YRt9MK1HdX2UKGgGaAloD0MIHt5zYHnEcUCUhpRSlGgVS55oFkdAvGEe+23KCHV9lChoBmgJaA9DCCaqtwZ2D3RAlIaUUpRoFUueaBZHQLxhMqtozvZ1fZQoaAZoCWgPQwiCj8GK0wlwQJSGlFKUaBVLhGgWR0C8YUWSpzcRdX2UKGgGaAloD0MIyM1wAz7KcECUhpRSlGgVS5doFkdAvGFHcIqsl3V9lChoBmgJaA9DCFM+BFWjm25AlIaUUpRoFUuIaBZHQLxhRjVhCt11fZQoaAZoCWgPQwj3x3vVSqFyQJSGlFKUaBVLjGgWR0C8YUmjXWe6dX2UKGgGaAloD0MITfVk/hF7ckCUhpRSlGgVS4ZoFkdAvGFY04zabnV9lChoBmgJaA9DCHjy6bEt2lBAlIaUUpRoFUuCaBZHQLxhb97F85V1fZQoaAZoCWgPQwifBaG8D35yQJSGlFKUaBVLu2gWR0C8YW+TJQtSdX2UKGgGaAloD0MIwVQza6nPcUCUhpRSlGgVS5ZoFkdAvGF9lMAWBXV9lChoBmgJaA9DCAZ/v5jt33BAlIaUUpRoFUuFaBZHQLxhiUsWfsh1fZQoaAZoCWgPQwjcaABvgYpwQJSGlFKUaBVLkGgWR0C8YY6Skj5cdX2UKGgGaAloD0MIBqBRunTAb0CUhpRSlGgVS5ZoFkdAvGGVAhStNnV9lChoBmgJaA9DCASr6uW333JAlIaUUpRoFUueaBZHQLxhmT1TR6Z1fZQoaAZoCWgPQwgHz4QmSStzQJSGlFKUaBVLtWgWR0C8YZvYzzmPdX2UKGgGaAloD0MIVFVoINb3cECUhpRSlGgVS9ZoFkdAvGGo7DEWI3V9lChoBmgJaA9DCMV29wCdeXNAlIaUUpRoFUvEaBZHQLxhrLxqfvp1fZQoaAZoCWgPQwgllpS7D9hyQJSGlFKUaBVLu2gWR0C8YbIagmJFdX2UKGgGaAloD0MIIazGEpbVcUCUhpRSlGgVS4ZoFkdAvGG1lOGj9HV9lChoBmgJaA9DCHnpJjHID3NAlIaUUpRoFUuxaBZHQLxhvexfOUt1fZQoaAZoCWgPQwgC2evdn0xyQJSGlFKUaBVLlWgWR0C8YcEE1VHXdX2UKGgGaAloD0MIQRGLGPZKckCUhpRSlGgVS5ZoFkdAvGHA5eZ5RnV9lChoBmgJaA9DCF73ViQmHXBAlIaUUpRoFUuPaBZHQLxhxOjqOcV1fZQoaAZoCWgPQwgxQKIJ1I5zQJSGlFKUaBVLwGgWR0C8YcmX9itrdX2UKGgGaAloD0MIDDz3Hi7IcUCUhpRSlGgVS7xoFkdAvGHRzMibD3V9lChoBmgJaA9DCAk1Q6qoKHJAlIaUUpRoFUugaBZHQLxh19nK4hF1fZQoaAZoCWgPQwjxaOOItYxwQJSGlFKUaBVLp2gWR0C8YdwM2FWXdX2UKGgGaAloD0MIQKAzaROpcUCUhpRSlGgVS69oFkdAvGHbQ0GeMHV9lChoBmgJaA9DCIXv/Q3aHnNAlIaUUpRoFUujaBZHQLxh3bXYlIF1fZQoaAZoCWgPQwiASSpTTHFxQJSGlFKUaBVLg2gWR0C8YeBe9i+ddX2UKGgGaAloD0MI6dSVz/JhckCUhpRSlGgVS5VoFkdAvGHoVnEl3XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3092, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.02, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 4096, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVBQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGkvaG9tZS9nYmFyYmFkaWxsby9taW5pY29uZGEzL2VudnMvcmwtY2xhc3MvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwQAgAD1lIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMaS9ob21lL2diYXJiYWRpbGxvL21pbmljb25kYTMvZW52cy9ybC1jbGFzcy9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.13.0-40-generic-x86_64-with-glibc2.31 #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022", "Python": "3.10.4", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0", "GPU Enabled": "False", "Numpy": "1.21.5", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd28cf9698a397c8b642e834499d8ffd5be7367ec863a43882795e03d5df18ae
|
3 |
+
size 460601
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3ed4957490>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3ed4957520>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3ed49575b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3ed4957640>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f3ed49576d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f3ed4957760>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3ed49577f0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f3ed4957880>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3ed4957910>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3ed49579a0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3ed4957a30>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f3ed4bf2640>"
|
20 |
+
},
|
21 |
+
"verbose": false,
|
22 |
+
"policy_kwargs": {
|
23 |
+
"net_arch": [
|
24 |
+
{
|
25 |
+
"pi": [
|
26 |
+
128,
|
27 |
+
128
|
28 |
+
],
|
29 |
+
"vf": [
|
30 |
+
128,
|
31 |
+
128
|
32 |
+
]
|
33 |
+
}
|
34 |
+
]
|
35 |
+
},
|
36 |
+
"observation_space": {
|
37 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
38 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"dtype": "float32",
|
40 |
+
"_shape": [
|
41 |
+
8
|
42 |
+
],
|
43 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
44 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
45 |
+
"bounded_below": "[False False False False False False False False]",
|
46 |
+
"bounded_above": "[False False False False False False False False]",
|
47 |
+
"_np_random": null
|
48 |
+
},
|
49 |
+
"action_space": {
|
50 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
51 |
+
":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
52 |
+
"n": 4,
|
53 |
+
"_shape": [],
|
54 |
+
"dtype": "int64",
|
55 |
+
"_np_random": null
|
56 |
+
},
|
57 |
+
"n_envs": 64,
|
58 |
+
"num_timesteps": 2031616,
|
59 |
+
"_total_timesteps": 2000000,
|
60 |
+
"_num_timesteps_at_start": 0,
|
61 |
+
"seed": null,
|
62 |
+
"action_noise": null,
|
63 |
+
"start_time": 1652210309.385881,
|
64 |
+
"learning_rate": {
|
65 |
+
":type:": "<class 'function'>",
|
66 |
+
":serialized:": "gAWVyQEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwJLQ0MIZAF8ABQAUwCUTkc/aJN0vGp++oaUKYwBeJSFlIwiL3RtcC9pcHlrZXJuZWxfMTQxNjEvMzgxMTMwMzA5Mi5weZSMCDxsYW1iZGE+lEsGQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBd9lH2UKGgUaA6MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
67 |
+
},
|
68 |
+
"tensorboard_log": "logs/07_batch_size/batch_size_4096",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gAWVyQEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwJLQ0MIZAF8ABQAUwCUTkc/aJN0vGp++oaUKYwBeJSFlIwiL3RtcC9pcHlrZXJuZWxfMTQxNjEvMzgxMTMwMzA5Mi5weZSMCDxsYW1iZGE+lEsGQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBd9lH2UKGgUaA6MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAJoPwbxIr5i6hRdZvp3Xtzge5pQ6E18muAAAgD8AAIA/0/Q+PjzIHz7Ykty+xUUKv3insT2XrJq+AAAAAAAAAABADpc9Zjy7P8qNqD6qnjK+wjGAPQXBjD0AAAAAAAAAAJM0jD4ZjWI/BmswPuClML/e9vc+IjiyPQAAAAAAAAAAurQjvjHNUj96kL2+SolhvzYBqb5idPW9AAAAAAAAAAAz8z67UsmkP42UCLzqDQq/eMKDPB7hU7sAAAAAAAAAABoJQD5sUKU+Nf4+vg0OK78GSz8+UM5CvgAAAAAAAAAAWk7Rvbp9YD5nDjY+fu0hv1sbbb14WQk+AAAAAAAAAADzpju+oMKnPmpslT2ywD6/rhY2vvCDCD4AAAAAAAAAALM29T2Y/qI9B1ADvsdmlL6JY+w9qHIcvQAAAAAAAAAAc7ylvVyHe7rea1M28/YaMWxUCjuy3oK1AACAPwAAgD+A/Oo9LuDYO4sBxL7XTFO+4PuJvTwYkb4AAAAAAAAAAJoNbrzMcKk/yjZHvgkYIr/N6MC7/pSGvQAAAAAAAAAAc72YvY/yO7pT2Ac+53KBvCPomTsE6q49AACAPwAAAAAATgm99thvutDpNT7JaYG4nN43O2a+brcAAIA/AACAPzPTILu7laI+oZSIPXXTRb/RZGU9UlTzPQAAAAAAAAAAmnGQPFe1oz/ellc95+kUv5eusTsuv+A8AAAAAAAAAACACxm+PKxRPzr/Mr4wTV+/9EiAvm5vwr0AAAAAAAAAAJpocz2DByO8sGdqvvy/Dj1Esy89by03OgAAgD8AAIA/Zl6NPeD4iD6icG+8bZIxv2G8MD3aILu7AAAAAAAAAACaHS+87z6pPxa4db1CXea+b60Wu9yyQr0AAAAAAAAAACAlJD4U6pk/Y9iiPkdNSb/OTSQ+Yth5PgAAAAAAAAAAZlp/Prb0QT9mJAo987hLv4rT0z5OB2y9AAAAAAAAAABNx749rhmvupIoATPinoSwr1SRubKmvLMAAIA/AACAP82UPLxriYo/UppXvfSPYL9u2VI8BZBxPQAAAAAAAAAAI4Brvt5kwz4D68K8PxtCv1TlnL4NH809AAAAAAAAAABGwbc+EvA1P5iFlb3TxBy/9zUFPwR2Sb0AAAAAAAAAALOXwz1cw0K6Oq34u+QlNbOAlYi7OiJgMwAAgD8AAIA/E/gSvjwEEj3u5Mc+ZpF5vlQRij3+4p4+AAAAAAAAAABAo+89FEjIuq7S4brzbh44KqiQu113EzoAAIA/AACAP+3rKr42aps/yIeevrrCRb8EYxG+/papvgAAAAAAAAAAANyXO9bfvD/6o6w9hnupPiyZs7o38pq9AAAAAAAAAABAMqA+EygjP4P+6b2vRTC/SlD/PkqUIr4AAAAAAAAAAJqYwT1Iu566x4w1vQmzHbkrNyc6o0CNOAAAgD8AAIA/Go+AvdWXdD9dw8+90w1/v11Mp73Io4i9AAAAAAAAAAAAGpo9uF6oueLobjS2QKwvblUIPIoHm7MAAIA/AACAP5pWRz0puGG6PR/mNg5uRzKhDKa51IwGtgAAgD8AAIA/wF2rPQVujj/hVsI+K/Jqv1CaAD6M8II+AAAAAAAAAABmIj299uxkunZNRjQbCaYu3pKQu+ZhprMAAIA/AACAP6aOgT3UbLI/dsvAPnemfL7fFum8RCdCPQAAAAAAAAAAhpQPPjgNqrttV1g61RWBuGkX87yNV125AACAPwAAgD+zxwo+g40AvPqeJzxTPMm6WZZdvYTXqLsAAIA/AACAP1rgo71v8hI9v4vFPS0S4b72eRy9Pr/UPQAAAAAAAAAAmkYuPT2Aqj/aKP0+XOUHv2aZBTz/Yio+AAAAAAAAAADNBKK8yFetP2cWor5M9Pi+WG2YO8TrJL0AAAAAAAAAAPPl/r0oHIY/eNL/vmGnY7+HRnK+A+5/vgAAAAAAAAAAs1g1PXLjvT+LzKs+XhW1PdyQhLwKCgI6AAAAAAAAAADaJcm9zOnBPmW2u71ZY0a/B8SsvQPnOTwAAAAAAAAAABqK/73kt5g98cOdPvQM1L5bREi9P+MmPgAAAAAAAAAAMxKfvfacYLrd5065wEeEtWtqirr1a3I4AACAPwAAgD/mbwK9v+uvPw2/Hr93i8G+VK+VPAuDH7wAAAAAAAAAAEY2CD4noog/1dyVPp0jTb/f71Q+CtauPgAAAAAAAAAAAAzAOyz6tj+1fZU+Nw/NPghUrbvk6Bi9AAAAAAAAAABaHfk9RcjYPFI8pb4bwWG+b8vCvdLxb74AAAAAAAAAALO5dT0pCAy66g3aslI9TrFbMaU5SlyPMwAAgD8AAIA/WggZPg8GQrxeL3K6nHaIOOoVsL3GG6I5AACAPwAAgD+mi7o911Yuu9O4DL5CUSA9n3TBvNzTBT4AAIA/AACAP00Tfj1Mg8A/gJC0Pq+z9jxqYGu8cswRPQAAAAAAAAAAzQsLvotEmj+XWLi+7AEyv34SJ76+4Mq+AAAAAAAAAABAP869H6jBP1/SHL/336o9ePnVO8v5eb0AAAAAAAAAAMC90b0KeWA/feFyvqM6e78IhVy+WvyDvQAAAAAAAAAAIE16vlAZgT5Q99c+hNkivwWvTL7USqY+AAAAAAAAAADNwY294S6xP7zsKr+dAHS+xabmO8m5sr0AAAAAAAAAAFDgU74TuiQ/+zvQvcxELL9VBLi+YJfvOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": null,
|
82 |
+
"_episode_num": 0,
|
83 |
+
"use_sde": false,
|
84 |
+
"sde_sample_freq": -1,
|
85 |
+
"_current_progress_remaining": -0.015808000000000044,
|
86 |
+
"ep_info_buffer": {
|
87 |
+
":type:": "<class 'collections.deque'>",
|
88 |
+
":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1EZ1OpAqckCUhpRSlIwBbJRLrowBdJRHQLxfEC9RJmN1fZQoaAZoCWgPQwi/1xAc151xQJSGlFKUaBVLrmgWR0C8Xxzz3AVPdX2UKGgGaAloD0MIJVmHo6vYZECUhpRSlGgVTegDaBZHQLxfNubI91V1fZQoaAZoCWgPQwiG/3QDxZVyQJSGlFKUaBVLo2gWR0C8Xz730wrUdX2UKGgGaAloD0MIya60jFQDaECUhpRSlGgVTegDaBZHQLxfPwUQCjl1fZQoaAZoCWgPQwgTu7a3WzdyQJSGlFKUaBVLomgWR0C8Xz7lJYkndX2UKGgGaAloD0MIYFeTp6wldECUhpRSlGgVS8RoFkdAvF9UhbGFSXV9lChoBmgJaA9DCFg4SfNHKnJAlIaUUpRoFUt/aBZHQLxfWAprk811fZQoaAZoCWgPQwg/WMaGbixxQJSGlFKUaBVLqGgWR0C8X2wzHjp+dX2UKGgGaAloD0MIH4ZWJ6chcUCUhpRSlGgVS6RoFkdAvF9xgpjMFHV9lChoBmgJaA9DCPIiE/CrTXBAlIaUUpRoFUuNaBZHQLxfd07KaG51fZQoaAZoCWgPQwiZm29Ed/dzQJSGlFKUaBVLrWgWR0C8X5LH+6y0dX2UKGgGaAloD0MI/RUyVwZuckCUhpRSlGgVS6ZoFkdAvF+XcSGrS3V9lChoBmgJaA9DCFe1pKPcnnJAlIaUUpRoFUuoaBZHQLxflmaYu011fZQoaAZoCWgPQwjGpSpt8WJwQJSGlFKUaBVLhGgWR0C8X5U1/DtPdX2UKGgGaAloD0MIg6EOK5xHcUCUhpRSlGgVS7JoFkdAvF+gpw0fo3V9lChoBmgJaA9DCJWfVPu0g3FAlIaUUpRoFUuhaBZHQLxftImw7kp1fZQoaAZoCWgPQwgHt7WFJ+pzQJSGlFKUaBVLuWgWR0C8X7gHu7YkdX2UKGgGaAloD0MILXsS2NxGcUCUhpRSlGgVS6BoFkdAvF+972L5ynV9lChoBmgJaA9DCMizy7f+gnJAlIaUUpRoFUueaBZHQLxfwGTcIqt1fZQoaAZoCWgPQwhHkEqxY+JyQJSGlFKUaBVLwWgWR0C8X8BqO939dX2UKGgGaAloD0MIKSMuAM1ncECUhpRSlGgVS49oFkdAvF/LXsgMdHV9lChoBmgJaA9DCJfiqrIv2HNAlIaUUpRoFUueaBZHQLxfzqvNeMR1fZQoaAZoCWgPQwgvFobI6WxzQJSGlFKUaBVLoWgWR0C8X9LcGkeqdX2UKGgGaAloD0MIx4LCoAyHcUCUhpRSlGgVS3toFkdAvF/YejmCAnV9lChoBmgJaA9DCKOvIM3YnXJAlIaUUpRoFUueaBZHQLxf4vnKW9l1fZQoaAZoCWgPQwjhlo+kpINxQJSGlFKUaBVLmGgWR0C8X+Ubo8p1dX2UKGgGaAloD0MI8uocAzJ8cECUhpRSlGgVS5NoFkdAvF/v0f5k9XV9lChoBmgJaA9DCHA+dazS4nJAlIaUUpRoFUuiaBZHQLxf8G+bmU51fZQoaAZoCWgPQwieYtUgTPpxQJSGlFKUaBVLqGgWR0C8X/tpM6BAdX2UKGgGaAloD0MIHJYGfhQAcUCUhpRSlGgVS5ZoFkdAvF/7N2TxG3V9lChoBmgJaA9DCHFV2XcF8HBAlIaUUpRoFUuHaBZHQLxf+t8eCCl1fZQoaAZoCWgPQwh6NUBp6NhxQJSGlFKUaBVLgWgWR0C8YAyiVSn+dX2UKGgGaAloD0MIwOjy5jB5ckCUhpRSlGgVS8ZoFkdAvGAQa0hNd3V9lChoBmgJaA9DCIWWdf8Yq3FAlIaUUpRoFUugaBZHQLxgEIMz/Id1fZQoaAZoCWgPQwj9TpMZL41xQJSGlFKUaBVLjWgWR0C8YBBllK9PdX2UKGgGaAloD0MII0kQrgA+cUCUhpRSlGgVS35oFkdAvGAVp0wJxHV9lChoBmgJaA9DCIup9BOOnXJAlIaUUpRoFUuwaBZHQLxgGM2m52B1fZQoaAZoCWgPQwiDiT+KOvBwQJSGlFKUaBVLoGgWR0C8YCHnp0OmdX2UKGgGaAloD0MIRu7p6o7yckCUhpRSlGgVS7FoFkdAvGAkpF1B+nV9lChoBmgJaA9DCAA49uy5m3FAlIaUUpRoFUuOaBZHQLxgI7I1cdJ1fZQoaAZoCWgPQwhs7uh/+X5zQJSGlFKUaBVLwWgWR0C8YCk5EMLGdX2UKGgGaAloD0MIWAOUhlpickCUhpRSlGgVS6toFkdAvGAsSpR4yHV9lChoBmgJaA9DCIdT5uZbNXNAlIaUUpRoFUu7aBZHQLxgMo2n8891fZQoaAZoCWgPQwiKraBpSaNyQJSGlFKUaBVLsGgWR0C8YDW6wt8NdX2UKGgGaAloD0MI492RsRq+cUCUhpRSlGgVS45oFkdAvGA+Cg9Ne3V9lChoBmgJaA9DCApJZvUOinNAlIaUUpRoFUu7aBZHQLxgPPjn3cp1fZQoaAZoCWgPQwjMmljgqx5zQJSGlFKUaBVLt2gWR0C8YGW9pRGddX2UKGgGaAloD0MIAAAAAMBFcUCUhpRSlGgVS6loFkdAvGBjDdgv13V9lChoBmgJaA9DCKjF4GEaUHFAlIaUUpRoFUuIaBZHQLxgaiMHbAV1fZQoaAZoCWgPQwj7yRgfZkBwQJSGlFKUaBVLgWgWR0C8YG8l9jPOdX2UKGgGaAloD0MIlPjcCbYdckCUhpRSlGgVS4toFkdAvGB+t4iX6nV9lChoBmgJaA9DCPHVjuIcEG9AlIaUUpRoFUuVaBZHQLxgxBg/keZ1fZQoaAZoCWgPQwhfsvFgC1NwQJSGlFKUaBVLo2gWR0C8YMeBg/kedX2UKGgGaAloD0MIyHpq9ZXzckCUhpRSlGgVS7hoFkdAvGDO1D0Dl3V9lChoBmgJaA9DCMdHizMGk3JAlIaUUpRoFUumaBZHQLxg1MKkVN51fZQoaAZoCWgPQwhaZ3xfnH5zQJSGlFKUaBVLx2gWR0C8YNNwBHTadX2UKGgGaAloD0MIjbgANArGcUCUhpRSlGgVS8FoFkdAvGDWo4uK43V9lChoBmgJaA9DCHhCrz9J2HJAlIaUUpRoFUu4aBZHQLxg3Jswco91fZQoaAZoCWgPQwgYP417cxpxQJSGlFKUaBVLnWgWR0C8YOdb1RLsdX2UKGgGaAloD0MI9+RhoZb6cUCUhpRSlGgVS7doFkdAvGDrZvkzXXV9lChoBmgJaA9DCIlBYOVQznBAlIaUUpRoFUuZaBZHQLxg9paiblR1fZQoaAZoCWgPQwhtOgK4GfJxQJSGlFKUaBVLe2gWR0C8YPTfWMCLdX2UKGgGaAloD0MIYkuPpnoMckCUhpRSlGgVS6doFkdAvGD4AT7EYXV9lChoBmgJaA9DCMyzklY8UHFAlIaUUpRoFUufaBZHQLxhAPp6hQF1fZQoaAZoCWgPQwjp19ZPP+lyQJSGlFKUaBVLnmgWR0C8YQViz9jxdX2UKGgGaAloD0MI0LUvoBe5cECUhpRSlGgVS7xoFkdAvGEHd43WF3V9lChoBmgJaA9DCHRAEvbtiHJAlIaUUpRoFUvZaBZHQLxhGPfsNUh1fZQoaAZoCWgPQwiVuI5xBbdxQJSGlFKUaBVLemgWR0C8YRt9MK1HdX2UKGgGaAloD0MIHt5zYHnEcUCUhpRSlGgVS55oFkdAvGEe+23KCHV9lChoBmgJaA9DCCaqtwZ2D3RAlIaUUpRoFUueaBZHQLxhMqtozvZ1fZQoaAZoCWgPQwiCj8GK0wlwQJSGlFKUaBVLhGgWR0C8YUWSpzcRdX2UKGgGaAloD0MIyM1wAz7KcECUhpRSlGgVS5doFkdAvGFHcIqsl3V9lChoBmgJaA9DCFM+BFWjm25AlIaUUpRoFUuIaBZHQLxhRjVhCt11fZQoaAZoCWgPQwj3x3vVSqFyQJSGlFKUaBVLjGgWR0C8YUmjXWe6dX2UKGgGaAloD0MITfVk/hF7ckCUhpRSlGgVS4ZoFkdAvGFY04zabnV9lChoBmgJaA9DCHjy6bEt2lBAlIaUUpRoFUuCaBZHQLxhb97F85V1fZQoaAZoCWgPQwifBaG8D35yQJSGlFKUaBVLu2gWR0C8YW+TJQtSdX2UKGgGaAloD0MIwVQza6nPcUCUhpRSlGgVS5ZoFkdAvGF9lMAWBXV9lChoBmgJaA9DCAZ/v5jt33BAlIaUUpRoFUuFaBZHQLxhiUsWfsh1fZQoaAZoCWgPQwjcaABvgYpwQJSGlFKUaBVLkGgWR0C8YY6Skj5cdX2UKGgGaAloD0MIBqBRunTAb0CUhpRSlGgVS5ZoFkdAvGGVAhStNnV9lChoBmgJaA9DCASr6uW333JAlIaUUpRoFUueaBZHQLxhmT1TR6Z1fZQoaAZoCWgPQwgHz4QmSStzQJSGlFKUaBVLtWgWR0C8YZvYzzmPdX2UKGgGaAloD0MIVFVoINb3cECUhpRSlGgVS9ZoFkdAvGGo7DEWI3V9lChoBmgJaA9DCMV29wCdeXNAlIaUUpRoFUvEaBZHQLxhrLxqfvp1fZQoaAZoCWgPQwgllpS7D9hyQJSGlFKUaBVLu2gWR0C8YbIagmJFdX2UKGgGaAloD0MIIazGEpbVcUCUhpRSlGgVS4ZoFkdAvGG1lOGj9HV9lChoBmgJaA9DCHnpJjHID3NAlIaUUpRoFUuxaBZHQLxhvexfOUt1fZQoaAZoCWgPQwgC2evdn0xyQJSGlFKUaBVLlWgWR0C8YcEE1VHXdX2UKGgGaAloD0MIQRGLGPZKckCUhpRSlGgVS5ZoFkdAvGHA5eZ5RnV9lChoBmgJaA9DCF73ViQmHXBAlIaUUpRoFUuPaBZHQLxhxOjqOcV1fZQoaAZoCWgPQwgxQKIJ1I5zQJSGlFKUaBVLwGgWR0C8YcmX9itrdX2UKGgGaAloD0MIDDz3Hi7IcUCUhpRSlGgVS7xoFkdAvGHRzMibD3V9lChoBmgJaA9DCAk1Q6qoKHJAlIaUUpRoFUugaBZHQLxh19nK4hF1fZQoaAZoCWgPQwjxaOOItYxwQJSGlFKUaBVLp2gWR0C8YdwM2FWXdX2UKGgGaAloD0MIQKAzaROpcUCUhpRSlGgVS69oFkdAvGHbQ0GeMHV9lChoBmgJaA9DCIXv/Q3aHnNAlIaUUpRoFUujaBZHQLxh3bXYlIF1fZQoaAZoCWgPQwiASSpTTHFxQJSGlFKUaBVLg2gWR0C8YeBe9i+ddX2UKGgGaAloD0MI6dSVz/JhckCUhpRSlGgVS5VoFkdAvGHoVnEl3XVlLg=="
|
89 |
+
},
|
90 |
+
"ep_success_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
93 |
+
},
|
94 |
+
"_n_updates": 3092,
|
95 |
+
"n_steps": 1024,
|
96 |
+
"gamma": 0.99,
|
97 |
+
"gae_lambda": 0.98,
|
98 |
+
"ent_coef": 0.02,
|
99 |
+
"vf_coef": 0.5,
|
100 |
+
"max_grad_norm": 0.5,
|
101 |
+
"batch_size": 4096,
|
102 |
+
"n_epochs": 4,
|
103 |
+
"clip_range": {
|
104 |
+
":type:": "<class 'function'>",
|
105 |
+
":serialized:": "gAWVBQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGkvaG9tZS9nYmFyYmFkaWxsby9taW5pY29uZGEzL2VudnMvcmwtY2xhc3MvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwQAgAD1lIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMaS9ob21lL2diYXJiYWRpbGxvL21pbmljb25kYTMvZW52cy9ybC1jbGFzcy9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
106 |
+
},
|
107 |
+
"clip_range_vf": null,
|
108 |
+
"normalize_advantage": true,
|
109 |
+
"target_kl": null
|
110 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b31690e26ae46704e3cad24bed887f988d07fc6ff219177c719b9e5a4f211897
|
3 |
+
size 294045
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:50da8f8bd608d74107570b41046fcd0a67fa99e9a077c42e19a03615958092eb
|
3 |
+
size 147777
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.13.0-40-generic-x86_64-with-glibc2.31 #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022
|
2 |
+
Python: 3.10.4
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.21.5
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c1eb1d1fd1e43c41db88d556ad6139c9fd0354a90aa61802d11596cc2d3f8c18
|
3 |
+
size 204494
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 307.08373475352533, "std_reward": 6.5236477736783804, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-11T18:20:43.338124"}
|