ironbar commited on
Commit
69ff7ef
·
1 Parent(s): 218a041

training a model on local pc

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 307.08 +/- 6.52
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3ed4957490>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3ed4957520>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3ed49575b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3ed4957640>", "_build": "<function ActorCriticPolicy._build at 0x7f3ed49576d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f3ed4957760>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3ed49577f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3ed4957880>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3ed4957910>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3ed49579a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3ed4957a30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3ed4bf2640>"}, "verbose": false, "policy_kwargs": {"net_arch": [{"pi": [128, 128], "vf": [128, 128]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 64, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652210309.385881, "learning_rate": {":type:": "<class 'function'>", ":serialized:": "gAWVyQEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwJLQ0MIZAF8ABQAUwCUTkc/aJN0vGp++oaUKYwBeJSFlIwiL3RtcC9pcHlrZXJuZWxfMTQxNjEvMzgxMTMwMzA5Mi5weZSMCDxsYW1iZGE+lEsGQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBd9lH2UKGgUaA6MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "tensorboard_log": "logs/07_batch_size/batch_size_4096", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVyQEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwJLQ0MIZAF8ABQAUwCUTkc/aJN0vGp++oaUKYwBeJSFlIwiL3RtcC9pcHlrZXJuZWxfMTQxNjEvMzgxMTMwMzA5Mi5weZSMCDxsYW1iZGE+lEsGQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBd9lH2UKGgUaA6MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAJoPwbxIr5i6hRdZvp3Xtzge5pQ6E18muAAAgD8AAIA/0/Q+PjzIHz7Ykty+xUUKv3insT2XrJq+AAAAAAAAAABADpc9Zjy7P8qNqD6qnjK+wjGAPQXBjD0AAAAAAAAAAJM0jD4ZjWI/BmswPuClML/e9vc+IjiyPQAAAAAAAAAAurQjvjHNUj96kL2+SolhvzYBqb5idPW9AAAAAAAAAAAz8z67UsmkP42UCLzqDQq/eMKDPB7hU7sAAAAAAAAAABoJQD5sUKU+Nf4+vg0OK78GSz8+UM5CvgAAAAAAAAAAWk7Rvbp9YD5nDjY+fu0hv1sbbb14WQk+AAAAAAAAAADzpju+oMKnPmpslT2ywD6/rhY2vvCDCD4AAAAAAAAAALM29T2Y/qI9B1ADvsdmlL6JY+w9qHIcvQAAAAAAAAAAc7ylvVyHe7rea1M28/YaMWxUCjuy3oK1AACAPwAAgD+A/Oo9LuDYO4sBxL7XTFO+4PuJvTwYkb4AAAAAAAAAAJoNbrzMcKk/yjZHvgkYIr/N6MC7/pSGvQAAAAAAAAAAc72YvY/yO7pT2Ac+53KBvCPomTsE6q49AACAPwAAAAAATgm99thvutDpNT7JaYG4nN43O2a+brcAAIA/AACAPzPTILu7laI+oZSIPXXTRb/RZGU9UlTzPQAAAAAAAAAAmnGQPFe1oz/ellc95+kUv5eusTsuv+A8AAAAAAAAAACACxm+PKxRPzr/Mr4wTV+/9EiAvm5vwr0AAAAAAAAAAJpocz2DByO8sGdqvvy/Dj1Esy89by03OgAAgD8AAIA/Zl6NPeD4iD6icG+8bZIxv2G8MD3aILu7AAAAAAAAAACaHS+87z6pPxa4db1CXea+b60Wu9yyQr0AAAAAAAAAACAlJD4U6pk/Y9iiPkdNSb/OTSQ+Yth5PgAAAAAAAAAAZlp/Prb0QT9mJAo987hLv4rT0z5OB2y9AAAAAAAAAABNx749rhmvupIoATPinoSwr1SRubKmvLMAAIA/AACAP82UPLxriYo/UppXvfSPYL9u2VI8BZBxPQAAAAAAAAAAI4Brvt5kwz4D68K8PxtCv1TlnL4NH809AAAAAAAAAABGwbc+EvA1P5iFlb3TxBy/9zUFPwR2Sb0AAAAAAAAAALOXwz1cw0K6Oq34u+QlNbOAlYi7OiJgMwAAgD8AAIA/E/gSvjwEEj3u5Mc+ZpF5vlQRij3+4p4+AAAAAAAAAABAo+89FEjIuq7S4brzbh44KqiQu113EzoAAIA/AACAP+3rKr42aps/yIeevrrCRb8EYxG+/papvgAAAAAAAAAAANyXO9bfvD/6o6w9hnupPiyZs7o38pq9AAAAAAAAAABAMqA+EygjP4P+6b2vRTC/SlD/PkqUIr4AAAAAAAAAAJqYwT1Iu566x4w1vQmzHbkrNyc6o0CNOAAAgD8AAIA/Go+AvdWXdD9dw8+90w1/v11Mp73Io4i9AAAAAAAAAAAAGpo9uF6oueLobjS2QKwvblUIPIoHm7MAAIA/AACAP5pWRz0puGG6PR/mNg5uRzKhDKa51IwGtgAAgD8AAIA/wF2rPQVujj/hVsI+K/Jqv1CaAD6M8II+AAAAAAAAAABmIj299uxkunZNRjQbCaYu3pKQu+ZhprMAAIA/AACAP6aOgT3UbLI/dsvAPnemfL7fFum8RCdCPQAAAAAAAAAAhpQPPjgNqrttV1g61RWBuGkX87yNV125AACAPwAAgD+zxwo+g40AvPqeJzxTPMm6WZZdvYTXqLsAAIA/AACAP1rgo71v8hI9v4vFPS0S4b72eRy9Pr/UPQAAAAAAAAAAmkYuPT2Aqj/aKP0+XOUHv2aZBTz/Yio+AAAAAAAAAADNBKK8yFetP2cWor5M9Pi+WG2YO8TrJL0AAAAAAAAAAPPl/r0oHIY/eNL/vmGnY7+HRnK+A+5/vgAAAAAAAAAAs1g1PXLjvT+LzKs+XhW1PdyQhLwKCgI6AAAAAAAAAADaJcm9zOnBPmW2u71ZY0a/B8SsvQPnOTwAAAAAAAAAABqK/73kt5g98cOdPvQM1L5bREi9P+MmPgAAAAAAAAAAMxKfvfacYLrd5065wEeEtWtqirr1a3I4AACAPwAAgD/mbwK9v+uvPw2/Hr93i8G+VK+VPAuDH7wAAAAAAAAAAEY2CD4noog/1dyVPp0jTb/f71Q+CtauPgAAAAAAAAAAAAzAOyz6tj+1fZU+Nw/NPghUrbvk6Bi9AAAAAAAAAABaHfk9RcjYPFI8pb4bwWG+b8vCvdLxb74AAAAAAAAAALO5dT0pCAy66g3aslI9TrFbMaU5SlyPMwAAgD8AAIA/WggZPg8GQrxeL3K6nHaIOOoVsL3GG6I5AACAPwAAgD+mi7o911Yuu9O4DL5CUSA9n3TBvNzTBT4AAIA/AACAP00Tfj1Mg8A/gJC0Pq+z9jxqYGu8cswRPQAAAAAAAAAAzQsLvotEmj+XWLi+7AEyv34SJ76+4Mq+AAAAAAAAAABAP869H6jBP1/SHL/336o9ePnVO8v5eb0AAAAAAAAAAMC90b0KeWA/feFyvqM6e78IhVy+WvyDvQAAAAAAAAAAIE16vlAZgT5Q99c+hNkivwWvTL7USqY+AAAAAAAAAADNwY294S6xP7zsKr+dAHS+xabmO8m5sr0AAAAAAAAAAFDgU74TuiQ/+zvQvcxELL9VBLi+YJfvOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1EZ1OpAqckCUhpRSlIwBbJRLrowBdJRHQLxfEC9RJmN1fZQoaAZoCWgPQwi/1xAc151xQJSGlFKUaBVLrmgWR0C8Xxzz3AVPdX2UKGgGaAloD0MIJVmHo6vYZECUhpRSlGgVTegDaBZHQLxfNubI91V1fZQoaAZoCWgPQwiG/3QDxZVyQJSGlFKUaBVLo2gWR0C8Xz730wrUdX2UKGgGaAloD0MIya60jFQDaECUhpRSlGgVTegDaBZHQLxfPwUQCjl1fZQoaAZoCWgPQwgTu7a3WzdyQJSGlFKUaBVLomgWR0C8Xz7lJYkndX2UKGgGaAloD0MIYFeTp6wldECUhpRSlGgVS8RoFkdAvF9UhbGFSXV9lChoBmgJaA9DCFg4SfNHKnJAlIaUUpRoFUt/aBZHQLxfWAprk811fZQoaAZoCWgPQwg/WMaGbixxQJSGlFKUaBVLqGgWR0C8X2wzHjp+dX2UKGgGaAloD0MIH4ZWJ6chcUCUhpRSlGgVS6RoFkdAvF9xgpjMFHV9lChoBmgJaA9DCPIiE/CrTXBAlIaUUpRoFUuNaBZHQLxfd07KaG51fZQoaAZoCWgPQwiZm29Ed/dzQJSGlFKUaBVLrWgWR0C8X5LH+6y0dX2UKGgGaAloD0MI/RUyVwZuckCUhpRSlGgVS6ZoFkdAvF+XcSGrS3V9lChoBmgJaA9DCFe1pKPcnnJAlIaUUpRoFUuoaBZHQLxflmaYu011fZQoaAZoCWgPQwjGpSpt8WJwQJSGlFKUaBVLhGgWR0C8X5U1/DtPdX2UKGgGaAloD0MIg6EOK5xHcUCUhpRSlGgVS7JoFkdAvF+gpw0fo3V9lChoBmgJaA9DCJWfVPu0g3FAlIaUUpRoFUuhaBZHQLxftImw7kp1fZQoaAZoCWgPQwgHt7WFJ+pzQJSGlFKUaBVLuWgWR0C8X7gHu7YkdX2UKGgGaAloD0MILXsS2NxGcUCUhpRSlGgVS6BoFkdAvF+972L5ynV9lChoBmgJaA9DCMizy7f+gnJAlIaUUpRoFUueaBZHQLxfwGTcIqt1fZQoaAZoCWgPQwhHkEqxY+JyQJSGlFKUaBVLwWgWR0C8X8BqO939dX2UKGgGaAloD0MIKSMuAM1ncECUhpRSlGgVS49oFkdAvF/LXsgMdHV9lChoBmgJaA9DCJfiqrIv2HNAlIaUUpRoFUueaBZHQLxfzqvNeMR1fZQoaAZoCWgPQwgvFobI6WxzQJSGlFKUaBVLoWgWR0C8X9LcGkeqdX2UKGgGaAloD0MIx4LCoAyHcUCUhpRSlGgVS3toFkdAvF/YejmCAnV9lChoBmgJaA9DCKOvIM3YnXJAlIaUUpRoFUueaBZHQLxf4vnKW9l1fZQoaAZoCWgPQwjhlo+kpINxQJSGlFKUaBVLmGgWR0C8X+Ubo8p1dX2UKGgGaAloD0MI8uocAzJ8cECUhpRSlGgVS5NoFkdAvF/v0f5k9XV9lChoBmgJaA9DCHA+dazS4nJAlIaUUpRoFUuiaBZHQLxf8G+bmU51fZQoaAZoCWgPQwieYtUgTPpxQJSGlFKUaBVLqGgWR0C8X/tpM6BAdX2UKGgGaAloD0MIHJYGfhQAcUCUhpRSlGgVS5ZoFkdAvF/7N2TxG3V9lChoBmgJaA9DCHFV2XcF8HBAlIaUUpRoFUuHaBZHQLxf+t8eCCl1fZQoaAZoCWgPQwh6NUBp6NhxQJSGlFKUaBVLgWgWR0C8YAyiVSn+dX2UKGgGaAloD0MIwOjy5jB5ckCUhpRSlGgVS8ZoFkdAvGAQa0hNd3V9lChoBmgJaA9DCIWWdf8Yq3FAlIaUUpRoFUugaBZHQLxgEIMz/Id1fZQoaAZoCWgPQwj9TpMZL41xQJSGlFKUaBVLjWgWR0C8YBBllK9PdX2UKGgGaAloD0MII0kQrgA+cUCUhpRSlGgVS35oFkdAvGAVp0wJxHV9lChoBmgJaA9DCIup9BOOnXJAlIaUUpRoFUuwaBZHQLxgGM2m52B1fZQoaAZoCWgPQwiDiT+KOvBwQJSGlFKUaBVLoGgWR0C8YCHnp0OmdX2UKGgGaAloD0MIRu7p6o7yckCUhpRSlGgVS7FoFkdAvGAkpF1B+nV9lChoBmgJaA9DCAA49uy5m3FAlIaUUpRoFUuOaBZHQLxgI7I1cdJ1fZQoaAZoCWgPQwhs7uh/+X5zQJSGlFKUaBVLwWgWR0C8YCk5EMLGdX2UKGgGaAloD0MIWAOUhlpickCUhpRSlGgVS6toFkdAvGAsSpR4yHV9lChoBmgJaA9DCIdT5uZbNXNAlIaUUpRoFUu7aBZHQLxgMo2n8891fZQoaAZoCWgPQwiKraBpSaNyQJSGlFKUaBVLsGgWR0C8YDW6wt8NdX2UKGgGaAloD0MI492RsRq+cUCUhpRSlGgVS45oFkdAvGA+Cg9Ne3V9lChoBmgJaA9DCApJZvUOinNAlIaUUpRoFUu7aBZHQLxgPPjn3cp1fZQoaAZoCWgPQwjMmljgqx5zQJSGlFKUaBVLt2gWR0C8YGW9pRGddX2UKGgGaAloD0MIAAAAAMBFcUCUhpRSlGgVS6loFkdAvGBjDdgv13V9lChoBmgJaA9DCKjF4GEaUHFAlIaUUpRoFUuIaBZHQLxgaiMHbAV1fZQoaAZoCWgPQwj7yRgfZkBwQJSGlFKUaBVLgWgWR0C8YG8l9jPOdX2UKGgGaAloD0MIlPjcCbYdckCUhpRSlGgVS4toFkdAvGB+t4iX6nV9lChoBmgJaA9DCPHVjuIcEG9AlIaUUpRoFUuVaBZHQLxgxBg/keZ1fZQoaAZoCWgPQwhfsvFgC1NwQJSGlFKUaBVLo2gWR0C8YMeBg/kedX2UKGgGaAloD0MIyHpq9ZXzckCUhpRSlGgVS7hoFkdAvGDO1D0Dl3V9lChoBmgJaA9DCMdHizMGk3JAlIaUUpRoFUumaBZHQLxg1MKkVN51fZQoaAZoCWgPQwhaZ3xfnH5zQJSGlFKUaBVLx2gWR0C8YNNwBHTadX2UKGgGaAloD0MIjbgANArGcUCUhpRSlGgVS8FoFkdAvGDWo4uK43V9lChoBmgJaA9DCHhCrz9J2HJAlIaUUpRoFUu4aBZHQLxg3Jswco91fZQoaAZoCWgPQwgYP417cxpxQJSGlFKUaBVLnWgWR0C8YOdb1RLsdX2UKGgGaAloD0MI9+RhoZb6cUCUhpRSlGgVS7doFkdAvGDrZvkzXXV9lChoBmgJaA9DCIlBYOVQznBAlIaUUpRoFUuZaBZHQLxg9paiblR1fZQoaAZoCWgPQwhtOgK4GfJxQJSGlFKUaBVLe2gWR0C8YPTfWMCLdX2UKGgGaAloD0MIYkuPpnoMckCUhpRSlGgVS6doFkdAvGD4AT7EYXV9lChoBmgJaA9DCMyzklY8UHFAlIaUUpRoFUufaBZHQLxhAPp6hQF1fZQoaAZoCWgPQwjp19ZPP+lyQJSGlFKUaBVLnmgWR0C8YQViz9jxdX2UKGgGaAloD0MI0LUvoBe5cECUhpRSlGgVS7xoFkdAvGEHd43WF3V9lChoBmgJaA9DCHRAEvbtiHJAlIaUUpRoFUvZaBZHQLxhGPfsNUh1fZQoaAZoCWgPQwiVuI5xBbdxQJSGlFKUaBVLemgWR0C8YRt9MK1HdX2UKGgGaAloD0MIHt5zYHnEcUCUhpRSlGgVS55oFkdAvGEe+23KCHV9lChoBmgJaA9DCCaqtwZ2D3RAlIaUUpRoFUueaBZHQLxhMqtozvZ1fZQoaAZoCWgPQwiCj8GK0wlwQJSGlFKUaBVLhGgWR0C8YUWSpzcRdX2UKGgGaAloD0MIyM1wAz7KcECUhpRSlGgVS5doFkdAvGFHcIqsl3V9lChoBmgJaA9DCFM+BFWjm25AlIaUUpRoFUuIaBZHQLxhRjVhCt11fZQoaAZoCWgPQwj3x3vVSqFyQJSGlFKUaBVLjGgWR0C8YUmjXWe6dX2UKGgGaAloD0MITfVk/hF7ckCUhpRSlGgVS4ZoFkdAvGFY04zabnV9lChoBmgJaA9DCHjy6bEt2lBAlIaUUpRoFUuCaBZHQLxhb97F85V1fZQoaAZoCWgPQwifBaG8D35yQJSGlFKUaBVLu2gWR0C8YW+TJQtSdX2UKGgGaAloD0MIwVQza6nPcUCUhpRSlGgVS5ZoFkdAvGF9lMAWBXV9lChoBmgJaA9DCAZ/v5jt33BAlIaUUpRoFUuFaBZHQLxhiUsWfsh1fZQoaAZoCWgPQwjcaABvgYpwQJSGlFKUaBVLkGgWR0C8YY6Skj5cdX2UKGgGaAloD0MIBqBRunTAb0CUhpRSlGgVS5ZoFkdAvGGVAhStNnV9lChoBmgJaA9DCASr6uW333JAlIaUUpRoFUueaBZHQLxhmT1TR6Z1fZQoaAZoCWgPQwgHz4QmSStzQJSGlFKUaBVLtWgWR0C8YZvYzzmPdX2UKGgGaAloD0MIVFVoINb3cECUhpRSlGgVS9ZoFkdAvGGo7DEWI3V9lChoBmgJaA9DCMV29wCdeXNAlIaUUpRoFUvEaBZHQLxhrLxqfvp1fZQoaAZoCWgPQwgllpS7D9hyQJSGlFKUaBVLu2gWR0C8YbIagmJFdX2UKGgGaAloD0MIIazGEpbVcUCUhpRSlGgVS4ZoFkdAvGG1lOGj9HV9lChoBmgJaA9DCHnpJjHID3NAlIaUUpRoFUuxaBZHQLxhvexfOUt1fZQoaAZoCWgPQwgC2evdn0xyQJSGlFKUaBVLlWgWR0C8YcEE1VHXdX2UKGgGaAloD0MIQRGLGPZKckCUhpRSlGgVS5ZoFkdAvGHA5eZ5RnV9lChoBmgJaA9DCF73ViQmHXBAlIaUUpRoFUuPaBZHQLxhxOjqOcV1fZQoaAZoCWgPQwgxQKIJ1I5zQJSGlFKUaBVLwGgWR0C8YcmX9itrdX2UKGgGaAloD0MIDDz3Hi7IcUCUhpRSlGgVS7xoFkdAvGHRzMibD3V9lChoBmgJaA9DCAk1Q6qoKHJAlIaUUpRoFUugaBZHQLxh19nK4hF1fZQoaAZoCWgPQwjxaOOItYxwQJSGlFKUaBVLp2gWR0C8YdwM2FWXdX2UKGgGaAloD0MIQKAzaROpcUCUhpRSlGgVS69oFkdAvGHbQ0GeMHV9lChoBmgJaA9DCIXv/Q3aHnNAlIaUUpRoFUujaBZHQLxh3bXYlIF1fZQoaAZoCWgPQwiASSpTTHFxQJSGlFKUaBVLg2gWR0C8YeBe9i+ddX2UKGgGaAloD0MI6dSVz/JhckCUhpRSlGgVS5VoFkdAvGHoVnEl3XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3092, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.02, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 4096, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVBQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGkvaG9tZS9nYmFyYmFkaWxsby9taW5pY29uZGEzL2VudnMvcmwtY2xhc3MvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwQAgAD1lIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMaS9ob21lL2diYXJiYWRpbGxvL21pbmljb25kYTMvZW52cy9ybC1jbGFzcy9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.13.0-40-generic-x86_64-with-glibc2.31 #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022", "Python": "3.10.4", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0", "GPU Enabled": "False", "Numpy": "1.21.5", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd28cf9698a397c8b642e834499d8ffd5be7367ec863a43882795e03d5df18ae
3
+ size 460601
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3ed4957490>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3ed4957520>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3ed49575b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3ed4957640>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f3ed49576d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f3ed4957760>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3ed49577f0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f3ed4957880>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3ed4957910>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3ed49579a0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3ed4957a30>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc._abc_data object at 0x7f3ed4bf2640>"
20
+ },
21
+ "verbose": false,
22
+ "policy_kwargs": {
23
+ "net_arch": [
24
+ {
25
+ "pi": [
26
+ 128,
27
+ 128
28
+ ],
29
+ "vf": [
30
+ 128,
31
+ 128
32
+ ]
33
+ }
34
+ ]
35
+ },
36
+ "observation_space": {
37
+ ":type:": "<class 'gym.spaces.box.Box'>",
38
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
39
+ "dtype": "float32",
40
+ "_shape": [
41
+ 8
42
+ ],
43
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
44
+ "high": "[inf inf inf inf inf inf inf inf]",
45
+ "bounded_below": "[False False False False False False False False]",
46
+ "bounded_above": "[False False False False False False False False]",
47
+ "_np_random": null
48
+ },
49
+ "action_space": {
50
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
51
+ ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
52
+ "n": 4,
53
+ "_shape": [],
54
+ "dtype": "int64",
55
+ "_np_random": null
56
+ },
57
+ "n_envs": 64,
58
+ "num_timesteps": 2031616,
59
+ "_total_timesteps": 2000000,
60
+ "_num_timesteps_at_start": 0,
61
+ "seed": null,
62
+ "action_noise": null,
63
+ "start_time": 1652210309.385881,
64
+ "learning_rate": {
65
+ ":type:": "<class 'function'>",
66
+ ":serialized:": "gAWVyQEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwJLQ0MIZAF8ABQAUwCUTkc/aJN0vGp++oaUKYwBeJSFlIwiL3RtcC9pcHlrZXJuZWxfMTQxNjEvMzgxMTMwMzA5Mi5weZSMCDxsYW1iZGE+lEsGQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBd9lH2UKGgUaA6MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
67
+ },
68
+ "tensorboard_log": "logs/07_batch_size/batch_size_4096",
69
+ "lr_schedule": {
70
+ ":type:": "<class 'function'>",
71
+ ":serialized:": "gAWVyQEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwJLQ0MIZAF8ABQAUwCUTkc/aJN0vGp++oaUKYwBeJSFlIwiL3RtcC9pcHlrZXJuZWxfMTQxNjEvMzgxMTMwMzA5Mi5weZSMCDxsYW1iZGE+lEsGQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBd9lH2UKGgUaA6MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
72
+ },
73
+ "_last_obs": {
74
+ ":type:": "<class 'numpy.ndarray'>",
75
+ ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAJoPwbxIr5i6hRdZvp3Xtzge5pQ6E18muAAAgD8AAIA/0/Q+PjzIHz7Ykty+xUUKv3insT2XrJq+AAAAAAAAAABADpc9Zjy7P8qNqD6qnjK+wjGAPQXBjD0AAAAAAAAAAJM0jD4ZjWI/BmswPuClML/e9vc+IjiyPQAAAAAAAAAAurQjvjHNUj96kL2+SolhvzYBqb5idPW9AAAAAAAAAAAz8z67UsmkP42UCLzqDQq/eMKDPB7hU7sAAAAAAAAAABoJQD5sUKU+Nf4+vg0OK78GSz8+UM5CvgAAAAAAAAAAWk7Rvbp9YD5nDjY+fu0hv1sbbb14WQk+AAAAAAAAAADzpju+oMKnPmpslT2ywD6/rhY2vvCDCD4AAAAAAAAAALM29T2Y/qI9B1ADvsdmlL6JY+w9qHIcvQAAAAAAAAAAc7ylvVyHe7rea1M28/YaMWxUCjuy3oK1AACAPwAAgD+A/Oo9LuDYO4sBxL7XTFO+4PuJvTwYkb4AAAAAAAAAAJoNbrzMcKk/yjZHvgkYIr/N6MC7/pSGvQAAAAAAAAAAc72YvY/yO7pT2Ac+53KBvCPomTsE6q49AACAPwAAAAAATgm99thvutDpNT7JaYG4nN43O2a+brcAAIA/AACAPzPTILu7laI+oZSIPXXTRb/RZGU9UlTzPQAAAAAAAAAAmnGQPFe1oz/ellc95+kUv5eusTsuv+A8AAAAAAAAAACACxm+PKxRPzr/Mr4wTV+/9EiAvm5vwr0AAAAAAAAAAJpocz2DByO8sGdqvvy/Dj1Esy89by03OgAAgD8AAIA/Zl6NPeD4iD6icG+8bZIxv2G8MD3aILu7AAAAAAAAAACaHS+87z6pPxa4db1CXea+b60Wu9yyQr0AAAAAAAAAACAlJD4U6pk/Y9iiPkdNSb/OTSQ+Yth5PgAAAAAAAAAAZlp/Prb0QT9mJAo987hLv4rT0z5OB2y9AAAAAAAAAABNx749rhmvupIoATPinoSwr1SRubKmvLMAAIA/AACAP82UPLxriYo/UppXvfSPYL9u2VI8BZBxPQAAAAAAAAAAI4Brvt5kwz4D68K8PxtCv1TlnL4NH809AAAAAAAAAABGwbc+EvA1P5iFlb3TxBy/9zUFPwR2Sb0AAAAAAAAAALOXwz1cw0K6Oq34u+QlNbOAlYi7OiJgMwAAgD8AAIA/E/gSvjwEEj3u5Mc+ZpF5vlQRij3+4p4+AAAAAAAAAABAo+89FEjIuq7S4brzbh44KqiQu113EzoAAIA/AACAP+3rKr42aps/yIeevrrCRb8EYxG+/papvgAAAAAAAAAAANyXO9bfvD/6o6w9hnupPiyZs7o38pq9AAAAAAAAAABAMqA+EygjP4P+6b2vRTC/SlD/PkqUIr4AAAAAAAAAAJqYwT1Iu566x4w1vQmzHbkrNyc6o0CNOAAAgD8AAIA/Go+AvdWXdD9dw8+90w1/v11Mp73Io4i9AAAAAAAAAAAAGpo9uF6oueLobjS2QKwvblUIPIoHm7MAAIA/AACAP5pWRz0puGG6PR/mNg5uRzKhDKa51IwGtgAAgD8AAIA/wF2rPQVujj/hVsI+K/Jqv1CaAD6M8II+AAAAAAAAAABmIj299uxkunZNRjQbCaYu3pKQu+ZhprMAAIA/AACAP6aOgT3UbLI/dsvAPnemfL7fFum8RCdCPQAAAAAAAAAAhpQPPjgNqrttV1g61RWBuGkX87yNV125AACAPwAAgD+zxwo+g40AvPqeJzxTPMm6WZZdvYTXqLsAAIA/AACAP1rgo71v8hI9v4vFPS0S4b72eRy9Pr/UPQAAAAAAAAAAmkYuPT2Aqj/aKP0+XOUHv2aZBTz/Yio+AAAAAAAAAADNBKK8yFetP2cWor5M9Pi+WG2YO8TrJL0AAAAAAAAAAPPl/r0oHIY/eNL/vmGnY7+HRnK+A+5/vgAAAAAAAAAAs1g1PXLjvT+LzKs+XhW1PdyQhLwKCgI6AAAAAAAAAADaJcm9zOnBPmW2u71ZY0a/B8SsvQPnOTwAAAAAAAAAABqK/73kt5g98cOdPvQM1L5bREi9P+MmPgAAAAAAAAAAMxKfvfacYLrd5065wEeEtWtqirr1a3I4AACAPwAAgD/mbwK9v+uvPw2/Hr93i8G+VK+VPAuDH7wAAAAAAAAAAEY2CD4noog/1dyVPp0jTb/f71Q+CtauPgAAAAAAAAAAAAzAOyz6tj+1fZU+Nw/NPghUrbvk6Bi9AAAAAAAAAABaHfk9RcjYPFI8pb4bwWG+b8vCvdLxb74AAAAAAAAAALO5dT0pCAy66g3aslI9TrFbMaU5SlyPMwAAgD8AAIA/WggZPg8GQrxeL3K6nHaIOOoVsL3GG6I5AACAPwAAgD+mi7o911Yuu9O4DL5CUSA9n3TBvNzTBT4AAIA/AACAP00Tfj1Mg8A/gJC0Pq+z9jxqYGu8cswRPQAAAAAAAAAAzQsLvotEmj+XWLi+7AEyv34SJ76+4Mq+AAAAAAAAAABAP869H6jBP1/SHL/336o9ePnVO8v5eb0AAAAAAAAAAMC90b0KeWA/feFyvqM6e78IhVy+WvyDvQAAAAAAAAAAIE16vlAZgT5Q99c+hNkivwWvTL7USqY+AAAAAAAAAADNwY294S6xP7zsKr+dAHS+xabmO8m5sr0AAAAAAAAAAFDgU74TuiQ/+zvQvcxELL9VBLi+YJfvOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="
76
+ },
77
+ "_last_episode_starts": {
78
+ ":type:": "<class 'numpy.ndarray'>",
79
+ ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="
80
+ },
81
+ "_last_original_obs": null,
82
+ "_episode_num": 0,
83
+ "use_sde": false,
84
+ "sde_sample_freq": -1,
85
+ "_current_progress_remaining": -0.015808000000000044,
86
+ "ep_info_buffer": {
87
+ ":type:": "<class 'collections.deque'>",
88
+ ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1EZ1OpAqckCUhpRSlIwBbJRLrowBdJRHQLxfEC9RJmN1fZQoaAZoCWgPQwi/1xAc151xQJSGlFKUaBVLrmgWR0C8Xxzz3AVPdX2UKGgGaAloD0MIJVmHo6vYZECUhpRSlGgVTegDaBZHQLxfNubI91V1fZQoaAZoCWgPQwiG/3QDxZVyQJSGlFKUaBVLo2gWR0C8Xz730wrUdX2UKGgGaAloD0MIya60jFQDaECUhpRSlGgVTegDaBZHQLxfPwUQCjl1fZQoaAZoCWgPQwgTu7a3WzdyQJSGlFKUaBVLomgWR0C8Xz7lJYkndX2UKGgGaAloD0MIYFeTp6wldECUhpRSlGgVS8RoFkdAvF9UhbGFSXV9lChoBmgJaA9DCFg4SfNHKnJAlIaUUpRoFUt/aBZHQLxfWAprk811fZQoaAZoCWgPQwg/WMaGbixxQJSGlFKUaBVLqGgWR0C8X2wzHjp+dX2UKGgGaAloD0MIH4ZWJ6chcUCUhpRSlGgVS6RoFkdAvF9xgpjMFHV9lChoBmgJaA9DCPIiE/CrTXBAlIaUUpRoFUuNaBZHQLxfd07KaG51fZQoaAZoCWgPQwiZm29Ed/dzQJSGlFKUaBVLrWgWR0C8X5LH+6y0dX2UKGgGaAloD0MI/RUyVwZuckCUhpRSlGgVS6ZoFkdAvF+XcSGrS3V9lChoBmgJaA9DCFe1pKPcnnJAlIaUUpRoFUuoaBZHQLxflmaYu011fZQoaAZoCWgPQwjGpSpt8WJwQJSGlFKUaBVLhGgWR0C8X5U1/DtPdX2UKGgGaAloD0MIg6EOK5xHcUCUhpRSlGgVS7JoFkdAvF+gpw0fo3V9lChoBmgJaA9DCJWfVPu0g3FAlIaUUpRoFUuhaBZHQLxftImw7kp1fZQoaAZoCWgPQwgHt7WFJ+pzQJSGlFKUaBVLuWgWR0C8X7gHu7YkdX2UKGgGaAloD0MILXsS2NxGcUCUhpRSlGgVS6BoFkdAvF+972L5ynV9lChoBmgJaA9DCMizy7f+gnJAlIaUUpRoFUueaBZHQLxfwGTcIqt1fZQoaAZoCWgPQwhHkEqxY+JyQJSGlFKUaBVLwWgWR0C8X8BqO939dX2UKGgGaAloD0MIKSMuAM1ncECUhpRSlGgVS49oFkdAvF/LXsgMdHV9lChoBmgJaA9DCJfiqrIv2HNAlIaUUpRoFUueaBZHQLxfzqvNeMR1fZQoaAZoCWgPQwgvFobI6WxzQJSGlFKUaBVLoWgWR0C8X9LcGkeqdX2UKGgGaAloD0MIx4LCoAyHcUCUhpRSlGgVS3toFkdAvF/YejmCAnV9lChoBmgJaA9DCKOvIM3YnXJAlIaUUpRoFUueaBZHQLxf4vnKW9l1fZQoaAZoCWgPQwjhlo+kpINxQJSGlFKUaBVLmGgWR0C8X+Ubo8p1dX2UKGgGaAloD0MI8uocAzJ8cECUhpRSlGgVS5NoFkdAvF/v0f5k9XV9lChoBmgJaA9DCHA+dazS4nJAlIaUUpRoFUuiaBZHQLxf8G+bmU51fZQoaAZoCWgPQwieYtUgTPpxQJSGlFKUaBVLqGgWR0C8X/tpM6BAdX2UKGgGaAloD0MIHJYGfhQAcUCUhpRSlGgVS5ZoFkdAvF/7N2TxG3V9lChoBmgJaA9DCHFV2XcF8HBAlIaUUpRoFUuHaBZHQLxf+t8eCCl1fZQoaAZoCWgPQwh6NUBp6NhxQJSGlFKUaBVLgWgWR0C8YAyiVSn+dX2UKGgGaAloD0MIwOjy5jB5ckCUhpRSlGgVS8ZoFkdAvGAQa0hNd3V9lChoBmgJaA9DCIWWdf8Yq3FAlIaUUpRoFUugaBZHQLxgEIMz/Id1fZQoaAZoCWgPQwj9TpMZL41xQJSGlFKUaBVLjWgWR0C8YBBllK9PdX2UKGgGaAloD0MII0kQrgA+cUCUhpRSlGgVS35oFkdAvGAVp0wJxHV9lChoBmgJaA9DCIup9BOOnXJAlIaUUpRoFUuwaBZHQLxgGM2m52B1fZQoaAZoCWgPQwiDiT+KOvBwQJSGlFKUaBVLoGgWR0C8YCHnp0OmdX2UKGgGaAloD0MIRu7p6o7yckCUhpRSlGgVS7FoFkdAvGAkpF1B+nV9lChoBmgJaA9DCAA49uy5m3FAlIaUUpRoFUuOaBZHQLxgI7I1cdJ1fZQoaAZoCWgPQwhs7uh/+X5zQJSGlFKUaBVLwWgWR0C8YCk5EMLGdX2UKGgGaAloD0MIWAOUhlpickCUhpRSlGgVS6toFkdAvGAsSpR4yHV9lChoBmgJaA9DCIdT5uZbNXNAlIaUUpRoFUu7aBZHQLxgMo2n8891fZQoaAZoCWgPQwiKraBpSaNyQJSGlFKUaBVLsGgWR0C8YDW6wt8NdX2UKGgGaAloD0MI492RsRq+cUCUhpRSlGgVS45oFkdAvGA+Cg9Ne3V9lChoBmgJaA9DCApJZvUOinNAlIaUUpRoFUu7aBZHQLxgPPjn3cp1fZQoaAZoCWgPQwjMmljgqx5zQJSGlFKUaBVLt2gWR0C8YGW9pRGddX2UKGgGaAloD0MIAAAAAMBFcUCUhpRSlGgVS6loFkdAvGBjDdgv13V9lChoBmgJaA9DCKjF4GEaUHFAlIaUUpRoFUuIaBZHQLxgaiMHbAV1fZQoaAZoCWgPQwj7yRgfZkBwQJSGlFKUaBVLgWgWR0C8YG8l9jPOdX2UKGgGaAloD0MIlPjcCbYdckCUhpRSlGgVS4toFkdAvGB+t4iX6nV9lChoBmgJaA9DCPHVjuIcEG9AlIaUUpRoFUuVaBZHQLxgxBg/keZ1fZQoaAZoCWgPQwhfsvFgC1NwQJSGlFKUaBVLo2gWR0C8YMeBg/kedX2UKGgGaAloD0MIyHpq9ZXzckCUhpRSlGgVS7hoFkdAvGDO1D0Dl3V9lChoBmgJaA9DCMdHizMGk3JAlIaUUpRoFUumaBZHQLxg1MKkVN51fZQoaAZoCWgPQwhaZ3xfnH5zQJSGlFKUaBVLx2gWR0C8YNNwBHTadX2UKGgGaAloD0MIjbgANArGcUCUhpRSlGgVS8FoFkdAvGDWo4uK43V9lChoBmgJaA9DCHhCrz9J2HJAlIaUUpRoFUu4aBZHQLxg3Jswco91fZQoaAZoCWgPQwgYP417cxpxQJSGlFKUaBVLnWgWR0C8YOdb1RLsdX2UKGgGaAloD0MI9+RhoZb6cUCUhpRSlGgVS7doFkdAvGDrZvkzXXV9lChoBmgJaA9DCIlBYOVQznBAlIaUUpRoFUuZaBZHQLxg9paiblR1fZQoaAZoCWgPQwhtOgK4GfJxQJSGlFKUaBVLe2gWR0C8YPTfWMCLdX2UKGgGaAloD0MIYkuPpnoMckCUhpRSlGgVS6doFkdAvGD4AT7EYXV9lChoBmgJaA9DCMyzklY8UHFAlIaUUpRoFUufaBZHQLxhAPp6hQF1fZQoaAZoCWgPQwjp19ZPP+lyQJSGlFKUaBVLnmgWR0C8YQViz9jxdX2UKGgGaAloD0MI0LUvoBe5cECUhpRSlGgVS7xoFkdAvGEHd43WF3V9lChoBmgJaA9DCHRAEvbtiHJAlIaUUpRoFUvZaBZHQLxhGPfsNUh1fZQoaAZoCWgPQwiVuI5xBbdxQJSGlFKUaBVLemgWR0C8YRt9MK1HdX2UKGgGaAloD0MIHt5zYHnEcUCUhpRSlGgVS55oFkdAvGEe+23KCHV9lChoBmgJaA9DCCaqtwZ2D3RAlIaUUpRoFUueaBZHQLxhMqtozvZ1fZQoaAZoCWgPQwiCj8GK0wlwQJSGlFKUaBVLhGgWR0C8YUWSpzcRdX2UKGgGaAloD0MIyM1wAz7KcECUhpRSlGgVS5doFkdAvGFHcIqsl3V9lChoBmgJaA9DCFM+BFWjm25AlIaUUpRoFUuIaBZHQLxhRjVhCt11fZQoaAZoCWgPQwj3x3vVSqFyQJSGlFKUaBVLjGgWR0C8YUmjXWe6dX2UKGgGaAloD0MITfVk/hF7ckCUhpRSlGgVS4ZoFkdAvGFY04zabnV9lChoBmgJaA9DCHjy6bEt2lBAlIaUUpRoFUuCaBZHQLxhb97F85V1fZQoaAZoCWgPQwifBaG8D35yQJSGlFKUaBVLu2gWR0C8YW+TJQtSdX2UKGgGaAloD0MIwVQza6nPcUCUhpRSlGgVS5ZoFkdAvGF9lMAWBXV9lChoBmgJaA9DCAZ/v5jt33BAlIaUUpRoFUuFaBZHQLxhiUsWfsh1fZQoaAZoCWgPQwjcaABvgYpwQJSGlFKUaBVLkGgWR0C8YY6Skj5cdX2UKGgGaAloD0MIBqBRunTAb0CUhpRSlGgVS5ZoFkdAvGGVAhStNnV9lChoBmgJaA9DCASr6uW333JAlIaUUpRoFUueaBZHQLxhmT1TR6Z1fZQoaAZoCWgPQwgHz4QmSStzQJSGlFKUaBVLtWgWR0C8YZvYzzmPdX2UKGgGaAloD0MIVFVoINb3cECUhpRSlGgVS9ZoFkdAvGGo7DEWI3V9lChoBmgJaA9DCMV29wCdeXNAlIaUUpRoFUvEaBZHQLxhrLxqfvp1fZQoaAZoCWgPQwgllpS7D9hyQJSGlFKUaBVLu2gWR0C8YbIagmJFdX2UKGgGaAloD0MIIazGEpbVcUCUhpRSlGgVS4ZoFkdAvGG1lOGj9HV9lChoBmgJaA9DCHnpJjHID3NAlIaUUpRoFUuxaBZHQLxhvexfOUt1fZQoaAZoCWgPQwgC2evdn0xyQJSGlFKUaBVLlWgWR0C8YcEE1VHXdX2UKGgGaAloD0MIQRGLGPZKckCUhpRSlGgVS5ZoFkdAvGHA5eZ5RnV9lChoBmgJaA9DCF73ViQmHXBAlIaUUpRoFUuPaBZHQLxhxOjqOcV1fZQoaAZoCWgPQwgxQKIJ1I5zQJSGlFKUaBVLwGgWR0C8YcmX9itrdX2UKGgGaAloD0MIDDz3Hi7IcUCUhpRSlGgVS7xoFkdAvGHRzMibD3V9lChoBmgJaA9DCAk1Q6qoKHJAlIaUUpRoFUugaBZHQLxh19nK4hF1fZQoaAZoCWgPQwjxaOOItYxwQJSGlFKUaBVLp2gWR0C8YdwM2FWXdX2UKGgGaAloD0MIQKAzaROpcUCUhpRSlGgVS69oFkdAvGHbQ0GeMHV9lChoBmgJaA9DCIXv/Q3aHnNAlIaUUpRoFUujaBZHQLxh3bXYlIF1fZQoaAZoCWgPQwiASSpTTHFxQJSGlFKUaBVLg2gWR0C8YeBe9i+ddX2UKGgGaAloD0MI6dSVz/JhckCUhpRSlGgVS5VoFkdAvGHoVnEl3XVlLg=="
89
+ },
90
+ "ep_success_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
93
+ },
94
+ "_n_updates": 3092,
95
+ "n_steps": 1024,
96
+ "gamma": 0.99,
97
+ "gae_lambda": 0.98,
98
+ "ent_coef": 0.02,
99
+ "vf_coef": 0.5,
100
+ "max_grad_norm": 0.5,
101
+ "batch_size": 4096,
102
+ "n_epochs": 4,
103
+ "clip_range": {
104
+ ":type:": "<class 'function'>",
105
+ ":serialized:": "gAWVBQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGkvaG9tZS9nYmFyYmFkaWxsby9taW5pY29uZGEzL2VudnMvcmwtY2xhc3MvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwQAgAD1lIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMaS9ob21lL2diYXJiYWRpbGxvL21pbmljb25kYTMvZW52cy9ybC1jbGFzcy9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
106
+ },
107
+ "clip_range_vf": null,
108
+ "normalize_advantage": true,
109
+ "target_kl": null
110
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b31690e26ae46704e3cad24bed887f988d07fc6ff219177c719b9e5a4f211897
3
+ size 294045
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50da8f8bd608d74107570b41046fcd0a67fa99e9a077c42e19a03615958092eb
3
+ size 147777
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.13.0-40-generic-x86_64-with-glibc2.31 #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022
2
+ Python: 3.10.4
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0
5
+ GPU Enabled: False
6
+ Numpy: 1.21.5
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1eb1d1fd1e43c41db88d556ad6139c9fd0354a90aa61802d11596cc2d3f8c18
3
+ size 204494
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 307.08373475352533, "std_reward": 6.5236477736783804, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-11T18:20:43.338124"}