File size: 8,103 Bytes
fa15921
 
 
 
 
 
 
 
 
 
 
 
427da9c
9c0ae12
 
 
 
 
 
 
fa15921
 
3b8500d
 
3a32c99
fa15921
3a32c99
fa15921
fa7eab0
3a32c99
10982b1
 
 
f1f9016
 
79370ce
f1f9016
 
 
 
 
 
c008de6
f1f9016
79370ce
 
f1f9016
 
 
 
10982b1
 
 
 
 
3a32c99
 
10982b1
3a32c99
 
fa15921
10982b1
fa15921
 
 
 
 
 
 
 
 
 
 
 
3a32c99
fa15921
 
 
3a32c99
fa15921
 
 
 
10982b1
fa15921
 
 
 
 
 
 
 
 
 
 
 
 
3a32c99
fa15921
 
 
3a32c99
 
fa15921
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
878f739
fa15921
 
 
878f739
 
fa15921
 
427da9c
fa15921
 
 
05e7e81
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
---
pipeline_tag: sentence-similarity
language:
- pl
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
datasets:
- ipipan/polqa
- ipipan/maupqa
license: cc-by-sa-4.0
widget:
- source_sentence: "Pytanie: W jakim mieście urodził się Zbigniew Herbert?"
  sentences:
    - "Zbigniew Herbert</s>Zbigniew Bolesław Ryszard Herbert (ur. 29 października 1924 we Lwowie, zm. 28 lipca 1998 w Warszawie) – polski poeta, eseista i dramaturg."
    - "Zbigniew Herbert</s>Lato 1968 Herbert spędził w USA (na zaproszenie Poetry Center)."
    - "Herbert George Wells</s>Herbert George Wells (ur. 21 września 1866 w Bromley, zm. 13 sierpnia 1946 w Londynie) – brytyjski pisarz i biolog."
  example_title: "Zbigniew Herbert"
---

![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F5eb2c5ef4e876668a0c3779e%2Fj2JE7_VnbRifCmV7_4BP9.png%3C%2Fspan%3E)

# Silver Retriever Base (v1)

Silver Retriever model encodes the Polish sentences or paragraphs into a 768-dimensional dense vector space and can be used for tasks like document retrieval or semantic search.

It was initialized from the [HerBERT-base](https://huggingface.co/allegro/herbert-base-cased) model and fine-tuned on the [PolQA](https://huggingface.co/datasets/ipipan/polqa) and [MAUPQA](https://huggingface.co/datasets/ipipan/maupqa) datasets for 15,000 steps with a batch size of 1,024. Please refer to the [SilverRetriever: Advancing Neural Passage Retrieval for Polish Question Answering](https://arxiv.org/abs/2309.08469) for more details.

## Evaluation


| **Model**           | **Average [Acc]** | **Average [NDCG]** | [**PolQA**](https://huggingface.co/datasets/ipipan/polqa) **[Acc]** | [**PolQA**](https://huggingface.co/datasets/ipipan/polqa) **[NDCG]** | [**Allegro FAQ**](https://huggingface.co/datasets/piotr-rybak/allegro-faq) **[Acc]** | [**Allegro FAQ**](https://huggingface.co/datasets/piotr-rybak/allegro-faq) **[NDCG]** | [**Legal Questions**](https://huggingface.co/datasets/piotr-rybak/legal-questions) **[Acc]** | [**Legal Questions**](https://huggingface.co/datasets/piotr-rybak/legal-questions) **[NDCG]** |
|--------------------:|------------:|-------------:|------------:|-------------:|------------:|-------------:|------------:|-------------:|
| BM25                | 74.87       | 51.81        | 61.35       | 24.51        | 66.89       | 48.71        | 96.38   | **82.21**    |
| BM25 (lemma)        | 80.46       | 55.44        | 71.49       | 31.97        | 75.33       | 55.70        | 94.57       | 78.65        |
| [MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)       | 62.62       | 39.21        | 37.24       | 11.93        | 71.67       | 51.25        | 78.97       | 54.44        |
| [LaBSE](https://huggingface.co/sentence-transformers/LaBSE)               | 64.89       | 39.47        | 46.23       | 15.53        | 67.11       | 46.71        | 81.34       | 56.16        |
| [mContriever-Base](https://huggingface.co/nthakur/mcontriever-base-msmarco)    | 86.31       | 60.37        | 78.66       | 36.30        | 84.44       | 67.38        | 95.82       | 77.42        |
| [E5-Base](https://huggingface.co/intfloat/multilingual-e5-base)             | 91.58       | 66.56        | 86.61       | **46.08**    | 91.89       | 75.90        | 96.24       | 77.69        |
| [ST-DistilRoBERTa](https://huggingface.co/sdadas/st-polish-paraphrase-from-distilroberta)    | 73.78       | 48.29        | 48.43       | 16.73        | 84.89       | 64.39        | 88.02       | 63.76        |
| [ST-MPNet](https://huggingface.co/sdadas/st-polish-paraphrase-from-mpnet)          | 76.66       | 49.99        | 56.80       | 21.55        | 86.00       | 65.44        | 87.19       | 62.99        |
| [HerBERT-QA](https://huggingface.co/ipipan/herbert-base-qa-v1)          | 84.23       | 54.36        | 75.84       | 32.52        | 85.78       | 63.58        | 91.09       | 66.99        |
| [Silver Retriever v1](https://huggingface.co/ipipan/silver-retriever-base-v1) | 92.45   | 66.72    | 87.24   | 43.40        | **94.56**   | 79.66    | 95.54       | 77.10        |
| [Silver Retriever v1.1](https://huggingface.co/ipipan/silver-retriever-base-v1.1) | **93.18**   | **67.55**    | **88.60**   | 44.88        | 94.00   | **79.83**    | **96.94**       | 77.95        |

Legend:
- **Acc** is the Accuracy at 10
- **NDCG** is the Normalized Discounted Cumulative Gain at 10


## Usage

### Preparing inputs

The model was trained on question-passage pairs and works best when the input is the same format as that used during training:
- We added the phrase `Pytanie:` to the beginning of the question.
- The training passages consisted of `title` and `text` concatenated with the special token `</s>`. Even if your passages don't have a `title`, it is still beneficial to prefix a passage with the `</s>` token.
- Although we used the dot product during training, the model usually works better with the cosine distance.

### Inference with Sentence-Transformers

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
sentences = [
    "Pytanie: W jakim mieście urodził się Zbigniew Herbert?", 
    "Zbigniew Herbert</s>Zbigniew Bolesław Ryszard Herbert (ur. 29 października 1924 we Lwowie, zm. 28 lipca 1998 w Warszawie) – polski poeta, eseista i dramaturg.",
]

model = SentenceTransformer('ipipan/silver-retriever-base-v1')
embeddings = model.encode(sentences)
print(embeddings)
```

### Inference with HuggingFace Transformers
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

```python
from transformers import AutoTokenizer, AutoModel
import torch


def cls_pooling(model_output, attention_mask):
    return model_output[0][:,0]


# Sentences we want sentence embeddings for
sentences = [
    "Pytanie: W jakim mieście urodził się Zbigniew Herbert?", 
    "Zbigniew Herbert</s>Zbigniew Bolesław Ryszard Herbert (ur. 29 października 1924 we Lwowie, zm. 28 lipca 1998 w Warszawie) – polski poeta, eseista i dramaturg.",
]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('ipipan/silver-retriever-base-v1')
model = AutoModel.from_pretrained('ipipan/silver-retriever-base-v1')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, cls pooling.
sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)
```

## Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```

## Additional Information

### Model Creators

The model was created by Piotr Rybak from the [Institute of Computer Science, Polish Academy of Sciences](http://zil.ipipan.waw.pl/).

This work was supported by the European Regional Development Fund as a part of 2014–2020 Smart Growth Operational Programme, CLARIN — Common Language Resources and Technology Infrastructure, project no. POIR.04.02.00-00C002/19.

### Licensing Information

CC BY-SA 4.0

### Citation Information

```
@misc{rybak2023silverretriever,
    title={SilverRetriever: Advancing Neural Passage Retrieval for Polish Question Answering}, 
    author={Piotr Rybak and Maciej Ogrodniczuk},
    year={2023},
    eprint={2309.08469},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```