unsubscribe
commited on
Upload folder using huggingface_hub
Browse files- config.json +52 -0
- configuration_internlm3.py +197 -0
- gptq_model-4bit-128g.safetensors +3 -0
- quantize_config.json +13 -0
- special_tokens_map.json +54 -0
- tokenization_internlm3.py +294 -0
- tokenizer.model +3 -0
- tokenizer_config.json +249 -0
config.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_attn_implementation_autoset": true,
|
3 |
+
"_name_or_path": "/mnt/141/develop_internlm3_open_source_hf_0110v1/20250109095225_hf-080_open_source_hf",
|
4 |
+
"architectures": [
|
5 |
+
"InternLM3ForCausalLM"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_internlm3.InternLM3Config",
|
10 |
+
"AutoModel": "modeling_internlm3.InternLM3Model",
|
11 |
+
"AutoModelForCausalLM": "modeling_internlm3.InternLM3ForCausalLM"
|
12 |
+
},
|
13 |
+
"bias": false,
|
14 |
+
"bos_token_id": 1,
|
15 |
+
"eos_token_id": 2,
|
16 |
+
"head_dim": 128,
|
17 |
+
"hidden_act": "silu",
|
18 |
+
"hidden_size": 4096,
|
19 |
+
"initializer_range": 0.02,
|
20 |
+
"intermediate_size": 10240,
|
21 |
+
"max_position_embeddings": 32768,
|
22 |
+
"model_type": "internlm3",
|
23 |
+
"num_attention_heads": 32,
|
24 |
+
"num_hidden_layers": 48,
|
25 |
+
"num_key_value_heads": 2,
|
26 |
+
"pad_token_id": 2,
|
27 |
+
"qkv_bias": false,
|
28 |
+
"quantization_config": {
|
29 |
+
"bits": 4,
|
30 |
+
"damp_percent": 0.01,
|
31 |
+
"desc_act": false,
|
32 |
+
"group_size": 128,
|
33 |
+
"is_marlin_format": false,
|
34 |
+
"model_file_base_name": null,
|
35 |
+
"model_name_or_path": null,
|
36 |
+
"quant_method": "gptq",
|
37 |
+
"static_groups": false,
|
38 |
+
"sym": true,
|
39 |
+
"true_sequential": true
|
40 |
+
},
|
41 |
+
"rms_norm_eps": 1e-05,
|
42 |
+
"rope_scaling": {
|
43 |
+
"factor": 6.0,
|
44 |
+
"rope_type": "dynamic"
|
45 |
+
},
|
46 |
+
"rope_theta": 50000000,
|
47 |
+
"tie_word_embeddings": false,
|
48 |
+
"torch_dtype": "bfloat16",
|
49 |
+
"transformers_version": "4.48.0.dev0",
|
50 |
+
"use_cache": true,
|
51 |
+
"vocab_size": 128512
|
52 |
+
}
|
configuration_internlm3.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on transformers/src/transformers/models/llama/configuration_llama.py
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
""" InternLM3 model configuration"""
|
18 |
+
|
19 |
+
from transformers.configuration_utils import PretrainedConfig
|
20 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
21 |
+
from transformers.utils import logging
|
22 |
+
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
|
27 |
+
class InternLM3Config(PretrainedConfig):
|
28 |
+
r"""
|
29 |
+
This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
|
30 |
+
an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
|
31 |
+
configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
|
32 |
+
|
33 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
34 |
+
documentation from [`PretrainedConfig`] for more information.
|
35 |
+
|
36 |
+
|
37 |
+
Args:
|
38 |
+
vocab_size (`int`, *optional*, defaults to 151936):
|
39 |
+
Vocabulary size of the InternLM3 model. Defines the number of different tokens that can be represented by the
|
40 |
+
`inputs_ids` passed when calling [`InternLM3Model`]
|
41 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
42 |
+
Dimension of the hidden representations.
|
43 |
+
intermediate_size (`int`, *optional*, defaults to 22016):
|
44 |
+
Dimension of the MLP representations.
|
45 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
46 |
+
Number of hidden layers in the Transformer encoder.
|
47 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
48 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
49 |
+
num_key_value_heads (`int`, *optional*, defaults to 32):
|
50 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
51 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
52 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
53 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
54 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
55 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
|
56 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
57 |
+
The non-linear activation function (function or string) in the decoder.
|
58 |
+
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
59 |
+
The maximum sequence length that this model might ever be used with.
|
60 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
61 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
62 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
63 |
+
The epsilon used by the rms normalization layers.
|
64 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
65 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
66 |
+
relevant if `config.is_decoder=True`.
|
67 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
68 |
+
Whether the model's input and output word embeddings should be tied.
|
69 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
70 |
+
The base period of the RoPE embeddings.
|
71 |
+
rope_scaling (`Dict`, *optional*):
|
72 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
73 |
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
74 |
+
accordingly.
|
75 |
+
Expected contents:
|
76 |
+
`rope_type` (`str`):
|
77 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
78 |
+
'llama3'], with 'default' being the original RoPE implementation.
|
79 |
+
`factor` (`float`, *optional*):
|
80 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
81 |
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
82 |
+
original maximum pre-trained length.
|
83 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
84 |
+
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
85 |
+
pretraining.
|
86 |
+
`attention_factor` (`float`, *optional*):
|
87 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
88 |
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
89 |
+
`factor` field to infer the suggested value.
|
90 |
+
`beta_fast` (`float`, *optional*):
|
91 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
92 |
+
ramp function. If unspecified, it defaults to 32.
|
93 |
+
`beta_slow` (`float`, *optional*):
|
94 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
95 |
+
ramp function. If unspecified, it defaults to 1.
|
96 |
+
`short_factor` (`List[float]`, *optional*):
|
97 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
98 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
99 |
+
size divided by the number of attention heads divided by 2
|
100 |
+
`long_factor` (`List[float]`, *optional*):
|
101 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
102 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
103 |
+
size divided by the number of attention heads divided by 2
|
104 |
+
`low_freq_factor` (`float`, *optional*):
|
105 |
+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
106 |
+
`high_freq_factor` (`float`, *optional*):
|
107 |
+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
108 |
+
qkv_bias (`bool`, *optional*, defaults to `False`):
|
109 |
+
Whether to use a bias in the query, key and value projection layers during self-attention.
|
110 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
111 |
+
The dropout ratio for the attention probabilities.
|
112 |
+
bias (`bool`, *optional*, defaults to `False`):
|
113 |
+
Whether to use a bias in o_proj, up_proj, down_proj and gate_proj layers.
|
114 |
+
head_dim (`int`, *optional*):
|
115 |
+
The attention head dimension. If None, it will default to hidden_size // num_heads
|
116 |
+
|
117 |
+
```python
|
118 |
+
>>> from transformers import InternLM3Model, InternLM3Config
|
119 |
+
|
120 |
+
>>> # Initializing a InternLM3 style configuration
|
121 |
+
>>> configuration = InternLM3Config()
|
122 |
+
|
123 |
+
>>> # Initializing a model from the InternLM3-8B style configuration
|
124 |
+
>>> model = InternLM3Model(configuration)
|
125 |
+
|
126 |
+
>>> # Accessing the model configuration
|
127 |
+
>>> configuration = model.config
|
128 |
+
```"""
|
129 |
+
|
130 |
+
model_type = "internlm3"
|
131 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
132 |
+
|
133 |
+
# Default tensor parallel plan for base model `InternLM3`
|
134 |
+
base_model_tp_plan = {
|
135 |
+
"layers.*.self_attn.q_proj": "colwise",
|
136 |
+
"layers.*.self_attn.k_proj": "colwise",
|
137 |
+
"layers.*.self_attn.v_proj": "colwise",
|
138 |
+
"layers.*.self_attn.o_proj": "rowwise",
|
139 |
+
"layers.*.mlp.gate_proj": "colwise",
|
140 |
+
"layers.*.mlp.up_proj": "colwise",
|
141 |
+
"layers.*.mlp.down_proj": "rowwise",
|
142 |
+
}
|
143 |
+
|
144 |
+
def __init__(
|
145 |
+
self,
|
146 |
+
vocab_size=128512,
|
147 |
+
hidden_size=4096,
|
148 |
+
intermediate_size=11008,
|
149 |
+
num_hidden_layers=32,
|
150 |
+
num_attention_heads=32,
|
151 |
+
num_key_value_heads=32,
|
152 |
+
hidden_act="silu",
|
153 |
+
max_position_embeddings=32768,
|
154 |
+
initializer_range=0.02,
|
155 |
+
rms_norm_eps=1e-6,
|
156 |
+
use_cache=True,
|
157 |
+
tie_word_embeddings=False,
|
158 |
+
rope_theta=10000.0,
|
159 |
+
rope_scaling=None,
|
160 |
+
qkv_bias=False,
|
161 |
+
attention_dropout=0.0,
|
162 |
+
bias=False,
|
163 |
+
head_dim=None,
|
164 |
+
**kwargs,
|
165 |
+
):
|
166 |
+
self.vocab_size = vocab_size
|
167 |
+
self.max_position_embeddings = max_position_embeddings
|
168 |
+
self.hidden_size = hidden_size
|
169 |
+
self.intermediate_size = intermediate_size
|
170 |
+
self.num_hidden_layers = num_hidden_layers
|
171 |
+
self.num_attention_heads = num_attention_heads
|
172 |
+
|
173 |
+
# for backward compatibility
|
174 |
+
if num_key_value_heads is None:
|
175 |
+
num_key_value_heads = num_attention_heads
|
176 |
+
|
177 |
+
self.num_key_value_heads = num_key_value_heads
|
178 |
+
self.hidden_act = hidden_act
|
179 |
+
self.initializer_range = initializer_range
|
180 |
+
self.rms_norm_eps = rms_norm_eps
|
181 |
+
self.use_cache = use_cache
|
182 |
+
self.rope_theta = rope_theta
|
183 |
+
self.rope_scaling = rope_scaling
|
184 |
+
self.qkv_bias = qkv_bias
|
185 |
+
self.attention_dropout = attention_dropout
|
186 |
+
self.bias = bias
|
187 |
+
self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
|
188 |
+
# Validate the correctness of rotary position embeddings parameters
|
189 |
+
# BC: if there is a 'type' field, move it to 'rope_type'.
|
190 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
191 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
192 |
+
rope_config_validation(self)
|
193 |
+
|
194 |
+
super().__init__(
|
195 |
+
tie_word_embeddings=tie_word_embeddings,
|
196 |
+
**kwargs,
|
197 |
+
)
|
gptq_model-4bit-128g.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b7e5f460501c46bae53373710dd17037936802d3dbb9b46578657742a7d041d
|
3 |
+
size 6143339208
|
quantize_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bits": 4,
|
3 |
+
"group_size": 128,
|
4 |
+
"damp_percent": 0.01,
|
5 |
+
"desc_act": false,
|
6 |
+
"static_groups": false,
|
7 |
+
"sym": true,
|
8 |
+
"true_sequential": true,
|
9 |
+
"model_name_or_path": null,
|
10 |
+
"model_file_base_name": null,
|
11 |
+
"is_marlin_format": false,
|
12 |
+
"quant_method": "gptq"
|
13 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|action_start|>",
|
6 |
+
"<|action_end|>",
|
7 |
+
"<|interpreter|>",
|
8 |
+
"<|plugin|>",
|
9 |
+
"<restate>",
|
10 |
+
"</restate>",
|
11 |
+
"<planning>",
|
12 |
+
"</planning>",
|
13 |
+
"<recollect>",
|
14 |
+
"</recollect>",
|
15 |
+
"<execution>",
|
16 |
+
"</execution>",
|
17 |
+
"<review>",
|
18 |
+
"</review>",
|
19 |
+
"<summarize>",
|
20 |
+
"</summarize>",
|
21 |
+
"<retry>",
|
22 |
+
"</retry>",
|
23 |
+
"<conclude>",
|
24 |
+
"</conclude>"
|
25 |
+
],
|
26 |
+
"bos_token": {
|
27 |
+
"content": "<s>",
|
28 |
+
"lstrip": false,
|
29 |
+
"normalized": false,
|
30 |
+
"rstrip": false,
|
31 |
+
"single_word": false
|
32 |
+
},
|
33 |
+
"eos_token": {
|
34 |
+
"content": "</s>",
|
35 |
+
"lstrip": false,
|
36 |
+
"normalized": false,
|
37 |
+
"rstrip": false,
|
38 |
+
"single_word": false
|
39 |
+
},
|
40 |
+
"pad_token": {
|
41 |
+
"content": "</s>",
|
42 |
+
"lstrip": false,
|
43 |
+
"normalized": false,
|
44 |
+
"rstrip": false,
|
45 |
+
"single_word": false
|
46 |
+
},
|
47 |
+
"unk_token": {
|
48 |
+
"content": "<unk>",
|
49 |
+
"lstrip": false,
|
50 |
+
"normalized": false,
|
51 |
+
"rstrip": false,
|
52 |
+
"single_word": false
|
53 |
+
}
|
54 |
+
}
|
tokenization_internlm3.py
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from shutil import copyfile
|
3 |
+
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
|
4 |
+
|
5 |
+
import sentencepiece as spm
|
6 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
7 |
+
from transformers.utils import logging
|
8 |
+
|
9 |
+
if TYPE_CHECKING:
|
10 |
+
from transformers.tokenization_utils_base import TextInput
|
11 |
+
|
12 |
+
logger = logging.get_logger(__name__)
|
13 |
+
|
14 |
+
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
|
15 |
+
|
16 |
+
SPIECE_UNDERLINE = "▁"
|
17 |
+
|
18 |
+
|
19 |
+
class InternLM3Tokenizer(PreTrainedTokenizer):
|
20 |
+
"""
|
21 |
+
Construct a InternLM3 tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is
|
22 |
+
no padding token in the original model.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
vocab_file (`str`):
|
26 |
+
Path to the vocabulary file.
|
27 |
+
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`):
|
28 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
29 |
+
token instead.
|
30 |
+
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<s>"`):
|
31 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
32 |
+
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"</s>"`):
|
33 |
+
The end of sequence token.
|
34 |
+
pad_token (`str` or `tokenizers.AddedToken`, *optional*):
|
35 |
+
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
|
36 |
+
attention mechanisms or loss computation.
|
37 |
+
sp_model_kwargs (`Dict[str, Any]`, `Optional`, *optional*):
|
38 |
+
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
39 |
+
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
40 |
+
to set:
|
41 |
+
|
42 |
+
- `enable_sampling`: Enable subword regularization.
|
43 |
+
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
44 |
+
|
45 |
+
- `nbest_size = {0,1}`: No sampling is performed.
|
46 |
+
- `nbest_size > 1`: samples from the nbest_size results.
|
47 |
+
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
48 |
+
using forward-filtering-and-backward-sampling algorithm.
|
49 |
+
|
50 |
+
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
51 |
+
BPE-dropout.
|
52 |
+
|
53 |
+
add_bos_token (`bool`, *optional*, defaults to `True`):
|
54 |
+
Whether or not to add an `bos_token` at the start of sequences.
|
55 |
+
add_eos_token (`bool`, *optional*, defaults to `False`):
|
56 |
+
Whether or not to add an `eos_token` at the end of sequences.
|
57 |
+
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
|
58 |
+
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
|
59 |
+
extra spaces.
|
60 |
+
use_default_system_prompt (`bool`, *optional*, defaults to `False`):
|
61 |
+
Whether or not the default system prompt for InternLM3 should be used.
|
62 |
+
spaces_between_special_tokens (`bool`, *optional*, defaults to `False`):
|
63 |
+
Whether or not to add spaces between special tokens.
|
64 |
+
spaces_for_interleaved_special_tokens (`bool`, *optional*, defaults to `False`):
|
65 |
+
Whether or not to add spaces between special tokens that are interleaved with normal tokens.
|
66 |
+
add_prefix_space (`bool`, *optional*, defaults to `True`):
|
67 |
+
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
|
68 |
+
other word. Again, this should be set with `from_slow=True` to make sure it's taken into account.
|
69 |
+
"""
|
70 |
+
|
71 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
72 |
+
model_input_names = ["input_ids", "attention_mask"]
|
73 |
+
|
74 |
+
def __init__(
|
75 |
+
self,
|
76 |
+
vocab_file,
|
77 |
+
unk_token="<unk>",
|
78 |
+
bos_token="<s>",
|
79 |
+
eos_token="</s>",
|
80 |
+
pad_token=None,
|
81 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
82 |
+
add_bos_token=True,
|
83 |
+
add_eos_token=False,
|
84 |
+
clean_up_tokenization_spaces=False,
|
85 |
+
use_default_system_prompt=False,
|
86 |
+
spaces_between_special_tokens=False,
|
87 |
+
spaces_for_interleaved_special_tokens=False,
|
88 |
+
add_prefix_space=True,
|
89 |
+
**kwargs,
|
90 |
+
):
|
91 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
92 |
+
bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token
|
93 |
+
eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token
|
94 |
+
unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token
|
95 |
+
pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token
|
96 |
+
|
97 |
+
self.vocab_file = vocab_file
|
98 |
+
self.add_bos_token = add_bos_token
|
99 |
+
self.add_eos_token = add_eos_token
|
100 |
+
self.use_default_system_prompt = use_default_system_prompt
|
101 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
102 |
+
self.sp_model.Load(vocab_file)
|
103 |
+
self.add_prefix_space = add_prefix_space
|
104 |
+
self.spaces_for_interleaved_special_tokens = spaces_for_interleaved_special_tokens
|
105 |
+
|
106 |
+
vocab_size = self.sp_model.get_piece_size()
|
107 |
+
self.decoder = {i: self.sp_model.id_to_piece(i) for i in range(vocab_size)}
|
108 |
+
|
109 |
+
super().__init__(
|
110 |
+
bos_token=bos_token,
|
111 |
+
eos_token=eos_token,
|
112 |
+
unk_token=unk_token,
|
113 |
+
pad_token=pad_token,
|
114 |
+
add_bos_token=add_bos_token,
|
115 |
+
add_eos_token=add_eos_token,
|
116 |
+
sp_model_kwargs=sp_model_kwargs,
|
117 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
118 |
+
use_default_system_prompt=use_default_system_prompt,
|
119 |
+
spaces_between_special_tokens=spaces_between_special_tokens,
|
120 |
+
add_prefix_space=add_prefix_space,
|
121 |
+
**kwargs,
|
122 |
+
)
|
123 |
+
|
124 |
+
def __getstate__(self):
|
125 |
+
state = self.__dict__.copy()
|
126 |
+
state["sp_model"] = None
|
127 |
+
state["sp_model_proto"] = self.sp_model.serialized_model_proto()
|
128 |
+
return state
|
129 |
+
|
130 |
+
def __setstate__(self, d):
|
131 |
+
self.__dict__.update(d)
|
132 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
133 |
+
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
|
134 |
+
|
135 |
+
@property
|
136 |
+
def vocab_size(self):
|
137 |
+
"""Returns vocab size"""
|
138 |
+
return self.sp_model.get_piece_size()
|
139 |
+
|
140 |
+
def get_vocab(self):
|
141 |
+
"""Returns vocab as a dict"""
|
142 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
143 |
+
vocab.update(self.added_tokens_encoder)
|
144 |
+
return vocab
|
145 |
+
|
146 |
+
def tokenize(self, text: "TextInput", **kwargs) -> List[str]:
|
147 |
+
"""
|
148 |
+
Args:
|
149 |
+
text: TextInput
|
150 |
+
Simply calls PreTrainedTokenizer's method
|
151 |
+
"""
|
152 |
+
return super().tokenize(text, **kwargs)
|
153 |
+
|
154 |
+
def _tokenize(self, text, **kwargs):
|
155 |
+
"""
|
156 |
+
Args:
|
157 |
+
text: TextInput
|
158 |
+
Returns a tokenized string. The Gemma tokenizer never adds a prefix space.
|
159 |
+
"""
|
160 |
+
return self.sp_model.encode(text, out_type=str)
|
161 |
+
|
162 |
+
def _convert_token_to_id(self, token):
|
163 |
+
"""Converts a token (str) in an id using the vocab."""
|
164 |
+
return self.sp_model.piece_to_id(token)
|
165 |
+
|
166 |
+
def _convert_id_to_token(self, index):
|
167 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
168 |
+
return self.decoder.get(index, "")
|
169 |
+
|
170 |
+
def convert_tokens_to_string(self, tokens):
|
171 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
172 |
+
# since we manually add the prefix space, we have to remove it when decoding
|
173 |
+
if tokens[0].startswith(SPIECE_UNDERLINE) and self.add_prefix_space:
|
174 |
+
tokens[0] = tokens[0][1:]
|
175 |
+
|
176 |
+
current_sub_tokens = []
|
177 |
+
out_string = ""
|
178 |
+
prev_is_special = False
|
179 |
+
for i, token in enumerate(tokens):
|
180 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
181 |
+
if token in self.all_special_tokens:
|
182 |
+
if not prev_is_special and i != 0 and self.spaces_for_interleaved_special_tokens:
|
183 |
+
out_string += " "
|
184 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
185 |
+
prev_is_special = True
|
186 |
+
current_sub_tokens = []
|
187 |
+
else:
|
188 |
+
if (
|
189 |
+
prev_is_special
|
190 |
+
and i == 1
|
191 |
+
and self.add_prefix_space
|
192 |
+
and not token.startswith(SPIECE_UNDERLINE)
|
193 |
+
and self.spaces_for_interleaved_special_tokens
|
194 |
+
):
|
195 |
+
out_string += " "
|
196 |
+
current_sub_tokens.append(token)
|
197 |
+
prev_is_special = False
|
198 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
199 |
+
return out_string
|
200 |
+
|
201 |
+
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
202 |
+
"""
|
203 |
+
Save the vocabulary and special tokens file to a directory.
|
204 |
+
|
205 |
+
Args:
|
206 |
+
save_directory (`str`):
|
207 |
+
The directory in which to save the vocabulary.
|
208 |
+
|
209 |
+
Returns:
|
210 |
+
`Tuple(str)`: Paths to the files saved.
|
211 |
+
"""
|
212 |
+
if not os.path.isdir(save_directory):
|
213 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
214 |
+
return
|
215 |
+
out_vocab_file = os.path.join(save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"])
|
216 |
+
|
217 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
218 |
+
copyfile(self.vocab_file, out_vocab_file)
|
219 |
+
elif not os.path.isfile(self.vocab_file):
|
220 |
+
with open(out_vocab_file, "wb") as fi:
|
221 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
222 |
+
fi.write(content_spiece_model)
|
223 |
+
|
224 |
+
return (out_vocab_file,)
|
225 |
+
|
226 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
227 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
228 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
229 |
+
|
230 |
+
output = bos_token_id + token_ids_0 + eos_token_id
|
231 |
+
|
232 |
+
if token_ids_1 is not None:
|
233 |
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
234 |
+
|
235 |
+
return output
|
236 |
+
|
237 |
+
def get_special_tokens_mask(
|
238 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
239 |
+
) -> List[int]:
|
240 |
+
"""
|
241 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
242 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
243 |
+
|
244 |
+
Args:
|
245 |
+
token_ids_0 (`List[int]`):
|
246 |
+
List of IDs.
|
247 |
+
token_ids_1 (`List[int]`, *optional*):
|
248 |
+
Optional second list of IDs for sequence pairs.
|
249 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
250 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
251 |
+
|
252 |
+
Returns:
|
253 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
254 |
+
"""
|
255 |
+
if already_has_special_tokens:
|
256 |
+
return super().get_special_tokens_mask(token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True)
|
257 |
+
|
258 |
+
bos_token_id = [1] if self.add_bos_token else []
|
259 |
+
eos_token_id = [1] if self.add_eos_token else []
|
260 |
+
|
261 |
+
if token_ids_1 is None:
|
262 |
+
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
263 |
+
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id + bos_token_id + ([0] * len(token_ids_1)) + eos_token_id
|
264 |
+
|
265 |
+
def create_token_type_ids_from_sequences(self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None) -> List[int]:
|
266 |
+
"""
|
267 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
268 |
+
sequence pair mask has the following format:
|
269 |
+
|
270 |
+
```
|
271 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
272 |
+
| first sequence | second sequence |
|
273 |
+
```
|
274 |
+
|
275 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
276 |
+
|
277 |
+
Args:
|
278 |
+
token_ids_0 (`List[int]`):
|
279 |
+
List of ids.
|
280 |
+
token_ids_1 (`List[int]`, *optional*):
|
281 |
+
Optional second list of IDs for sequence pairs.
|
282 |
+
|
283 |
+
Returns:
|
284 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
285 |
+
"""
|
286 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
287 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
288 |
+
|
289 |
+
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
|
290 |
+
|
291 |
+
if token_ids_1 is not None:
|
292 |
+
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
|
293 |
+
|
294 |
+
return output
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bcacff3229854f5103ee7a85473a30ca9a8b3a68f3aae9b7479574b23ac2256b
|
3 |
+
size 2475075
|
tokenizer_config.json
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": true,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
},
|
30 |
+
"128111": {
|
31 |
+
"content": "<restate>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false,
|
36 |
+
"special": true
|
37 |
+
},
|
38 |
+
"128112": {
|
39 |
+
"content": "</restate>",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": false,
|
42 |
+
"rstrip": false,
|
43 |
+
"single_word": false,
|
44 |
+
"special": true
|
45 |
+
},
|
46 |
+
"128113": {
|
47 |
+
"content": "<planning>",
|
48 |
+
"lstrip": false,
|
49 |
+
"normalized": false,
|
50 |
+
"rstrip": false,
|
51 |
+
"single_word": false,
|
52 |
+
"special": true
|
53 |
+
},
|
54 |
+
"128114": {
|
55 |
+
"content": "</planning>",
|
56 |
+
"lstrip": false,
|
57 |
+
"normalized": false,
|
58 |
+
"rstrip": false,
|
59 |
+
"single_word": false,
|
60 |
+
"special": true
|
61 |
+
},
|
62 |
+
"128115": {
|
63 |
+
"content": "<recollect>",
|
64 |
+
"lstrip": false,
|
65 |
+
"normalized": false,
|
66 |
+
"rstrip": false,
|
67 |
+
"single_word": false,
|
68 |
+
"special": true
|
69 |
+
},
|
70 |
+
"128116": {
|
71 |
+
"content": "</recollect>",
|
72 |
+
"lstrip": false,
|
73 |
+
"normalized": false,
|
74 |
+
"rstrip": false,
|
75 |
+
"single_word": false,
|
76 |
+
"special": true
|
77 |
+
},
|
78 |
+
"128117": {
|
79 |
+
"content": "<execution>",
|
80 |
+
"lstrip": false,
|
81 |
+
"normalized": false,
|
82 |
+
"rstrip": false,
|
83 |
+
"single_word": false,
|
84 |
+
"special": true
|
85 |
+
},
|
86 |
+
"128118": {
|
87 |
+
"content": "</execution>",
|
88 |
+
"lstrip": false,
|
89 |
+
"normalized": false,
|
90 |
+
"rstrip": false,
|
91 |
+
"single_word": false,
|
92 |
+
"special": true
|
93 |
+
},
|
94 |
+
"128119": {
|
95 |
+
"content": "<review>",
|
96 |
+
"lstrip": false,
|
97 |
+
"normalized": false,
|
98 |
+
"rstrip": false,
|
99 |
+
"single_word": false,
|
100 |
+
"special": true
|
101 |
+
},
|
102 |
+
"128120": {
|
103 |
+
"content": "</review>",
|
104 |
+
"lstrip": false,
|
105 |
+
"normalized": false,
|
106 |
+
"rstrip": false,
|
107 |
+
"single_word": false,
|
108 |
+
"special": true
|
109 |
+
},
|
110 |
+
"128121": {
|
111 |
+
"content": "<summarize>",
|
112 |
+
"lstrip": false,
|
113 |
+
"normalized": false,
|
114 |
+
"rstrip": false,
|
115 |
+
"single_word": false,
|
116 |
+
"special": true
|
117 |
+
},
|
118 |
+
"128122": {
|
119 |
+
"content": "</summarize>",
|
120 |
+
"lstrip": false,
|
121 |
+
"normalized": false,
|
122 |
+
"rstrip": false,
|
123 |
+
"single_word": false,
|
124 |
+
"special": true
|
125 |
+
},
|
126 |
+
"128123": {
|
127 |
+
"content": "<retry>",
|
128 |
+
"lstrip": false,
|
129 |
+
"normalized": false,
|
130 |
+
"rstrip": false,
|
131 |
+
"single_word": false,
|
132 |
+
"special": true
|
133 |
+
},
|
134 |
+
"128124": {
|
135 |
+
"content": "</retry>",
|
136 |
+
"lstrip": false,
|
137 |
+
"normalized": false,
|
138 |
+
"rstrip": false,
|
139 |
+
"single_word": false,
|
140 |
+
"special": true
|
141 |
+
},
|
142 |
+
"128125": {
|
143 |
+
"content": "<conclude>",
|
144 |
+
"lstrip": false,
|
145 |
+
"normalized": false,
|
146 |
+
"rstrip": false,
|
147 |
+
"single_word": false,
|
148 |
+
"special": true
|
149 |
+
},
|
150 |
+
"128126": {
|
151 |
+
"content": "</conclude>",
|
152 |
+
"lstrip": false,
|
153 |
+
"normalized": false,
|
154 |
+
"rstrip": false,
|
155 |
+
"single_word": false,
|
156 |
+
"special": true
|
157 |
+
},
|
158 |
+
"128127": {
|
159 |
+
"content": "<|plugin|>",
|
160 |
+
"lstrip": false,
|
161 |
+
"normalized": false,
|
162 |
+
"rstrip": false,
|
163 |
+
"single_word": false,
|
164 |
+
"special": true
|
165 |
+
},
|
166 |
+
"128128": {
|
167 |
+
"content": "<|interpreter|>",
|
168 |
+
"lstrip": false,
|
169 |
+
"normalized": false,
|
170 |
+
"rstrip": false,
|
171 |
+
"single_word": false,
|
172 |
+
"special": true
|
173 |
+
},
|
174 |
+
"128129": {
|
175 |
+
"content": "<|action_end|>",
|
176 |
+
"lstrip": false,
|
177 |
+
"normalized": false,
|
178 |
+
"rstrip": false,
|
179 |
+
"single_word": false,
|
180 |
+
"special": true
|
181 |
+
},
|
182 |
+
"128130": {
|
183 |
+
"content": "<|action_start|>",
|
184 |
+
"lstrip": false,
|
185 |
+
"normalized": false,
|
186 |
+
"rstrip": false,
|
187 |
+
"single_word": false,
|
188 |
+
"special": true
|
189 |
+
},
|
190 |
+
"128131": {
|
191 |
+
"content": "<|im_end|>",
|
192 |
+
"lstrip": false,
|
193 |
+
"normalized": false,
|
194 |
+
"rstrip": false,
|
195 |
+
"single_word": false,
|
196 |
+
"special": true
|
197 |
+
},
|
198 |
+
"128132": {
|
199 |
+
"content": "<|im_start|>",
|
200 |
+
"lstrip": false,
|
201 |
+
"normalized": false,
|
202 |
+
"rstrip": false,
|
203 |
+
"single_word": false,
|
204 |
+
"special": true
|
205 |
+
}
|
206 |
+
},
|
207 |
+
"additional_special_tokens": [
|
208 |
+
"<|im_start|>",
|
209 |
+
"<|im_end|>",
|
210 |
+
"<|action_start|>",
|
211 |
+
"<|action_end|>",
|
212 |
+
"<|interpreter|>",
|
213 |
+
"<|plugin|>",
|
214 |
+
"<restate>",
|
215 |
+
"</restate>",
|
216 |
+
"<planning>",
|
217 |
+
"</planning>",
|
218 |
+
"<recollect>",
|
219 |
+
"</recollect>",
|
220 |
+
"<execution>",
|
221 |
+
"</execution>",
|
222 |
+
"<review>",
|
223 |
+
"</review>",
|
224 |
+
"<summarize>",
|
225 |
+
"</summarize>",
|
226 |
+
"<retry>",
|
227 |
+
"</retry>",
|
228 |
+
"<conclude>",
|
229 |
+
"</conclude>"
|
230 |
+
],
|
231 |
+
"auto_map": {
|
232 |
+
"AutoTokenizer": [
|
233 |
+
"tokenization_internlm3.InternLM3Tokenizer",
|
234 |
+
null
|
235 |
+
]
|
236 |
+
},
|
237 |
+
"bos_token": "<s>",
|
238 |
+
"chat_template": "{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
239 |
+
"clean_up_tokenization_spaces": false,
|
240 |
+
"eos_token": "</s>",
|
241 |
+
"extra_special_tokens": {},
|
242 |
+
"model_max_length": 1000000000000000019884624838656,
|
243 |
+
"pad_token": "</s>",
|
244 |
+
"sp_model_kwargs": {},
|
245 |
+
"spaces_between_special_tokens": false,
|
246 |
+
"tokenizer_class": "InternLM3Tokenizer",
|
247 |
+
"unk_token": "<unk>",
|
248 |
+
"use_default_system_prompt": false
|
249 |
+
}
|