Simingh commited on
Commit
3c0f75f
·
1 Parent(s): b6f5a75

upload model v1.0.0

Browse files
LICENSE ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Version Release Date: July 16, 2024
2
+
3
+ By engaging in any of the following activities with the Model or any Derivative Model, or by accepting the terms of this Agreement, you consent to be bound by the terms.
4
+
5
+ 1. Definitions.
6
+ The following definitions apply to this Agreement:
7
+ 1.1. "Derivative Model" refers to any of the following related to the Model: a. Modifications made to the Model; b. Works created based on the Model. c. Any other works derived from the Model.
8
+ 1.2. "Legal Entity" means the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (a) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (b) ownership of fifty percent (50%) or more of the outstanding shares, or (c) beneficial ownership of such entity.
9
+ 1.3. "Model" encompasses the following components of the machine learning model shared under this Agreement: Software,Checkpoints,Algorithms,Model Weights,Configuration files,Documentation,Code.
10
+ 1.4. "Distribution" means any transmission, reproduction, publication or other sharing of the Model or Derivatives of the Model to a third party, including providing the Model as a hosted service made available by electronic or other remote means - e.g. API-based or web access.
11
+ 1.5. "You" or "Your" means an individual or Legal Entity exercising permissions granted by this Agreement.
12
+ 1.6. "INF" (or "we") means INF Technology (Shanghai) Co., Ltd. and/or any of their affiliates.
13
+ 1.7. "Third Parties" means individuals or legal entities that are not under common control with INF or You.
14
+
15
+ 2. Grant of Rights.
16
+ Your use of the following rights is strictly dependent on your complete adherence to the terms of this Agreement. In accordance with the stipulations of this Agreement, INF grants you the following rights, which are perpetual, global, non-exclusive, free of charge, and royalty-free, and are subject to revocation:
17
+ 2.1. The right to publicly perform and display the Model.
18
+ 2.2. The right to reproduce and utilize the Model.
19
+ 2.3. The right to create derivative works based on the Model.
20
+ 2.4. The authority to manufacture, have manufactured, and sell the Model or its derivatives.
21
+ 2.5. The ability to offer for sale, distribute, and import the Model or its derivatives through various distribution channels.
22
+
23
+ 3. Redistribution.
24
+ You are permitted to reproduce and distribute the Model or any Derivative Models, either in their original form or with modifications, across various mediums, as long as you fulfill the following requirements:
25
+ 3.1. If you choose to distribute the Model, it is mandatory to:
26
+ Provide each recipient with a copy of this Agreement.
27
+ 3.2. You have the right to:
28
+ a. Append your own copyright statement to the modifications you make.
29
+ b. Offer alternative or supplementary licensing terms and conditions for the use, reproduction, or distribution of your modifications.
30
+ c. Establish terms and conditions for the Derivative Models as a whole.
31
+ d. However, this is only permissible if your use, reproduction, and distribution of the original Model align with the conditions laid out in this Agreement.
32
+
33
+ 4. Other Provisions
34
+ 4.1. Trademarks. No rights are given to use the trade names, trademarks, service marks, or product names of INF as part of this agreement, except as required for reasonable and customary use in describing the origin of the Model and fulfilling the notice requirements explicitly stated in this Agreement.
35
+ 4.2. Disclaimer of Warranty. Unless explicitly stipulated in writing or mandated by law, INF offers the Model strictly in its existing condition, without any form of warranty, whether stated or implied. This includes, but is not limited to, any warranties or conditions regarding the title, non-infringement, merchantability, or suitability for a specific purpose. It is your sole responsibility to assess the suitability of using or redistributing the Model, its derivatives, and any outputs. You also assume all risks related to the exercise of the rights granted by this Agreement.
36
+ 4.3. Governing Law and Jurisdiction. This agreement will be governed and construed under PRC laws without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this agreement. The People's Courts in Shanghai shall have exclusive jurisdiction over any dispute arising out of this Agreement.
37
+ 4.5. If any provision of this License is held to be invalid, illegal or unenforceable, the remaining provisions shall be unaffected thereby and remain valid as if such provision had not been set forth herein.
38
+ 4.6. Personal information, IP rights and related. This Model may contain personal information and works with IP rights. You commit to complying with applicable laws and regulations in the handling of personal information and the use of such works. Please note that INF's license granted to you to use the Model does not imply that you have obtained a legitimate basis for processing the related information or works. As an independent personal information processor and IP rights user, you need to ensure full compliance with relevant legal and regulatory requirements when handling personal information and works with IP rights that may be contained in the Model, and are willing to assume solely any risks and consequences that may arise from that.
39
+ 4.7. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall INF be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Model and the Complementary Material (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if INF has been advised of the possibility of such damages.
added_tokens.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<code_to_intermediate>": 96521,
3
+ "<empty_output>": 96520,
4
+ "<file_sep>": 96511,
5
+ "<fim_middle>": 96508,
6
+ "<fim_prefix>": 96507,
7
+ "<fim_suffix>": 96509,
8
+ "<intermediate_to_code>": 96522,
9
+ "<issue_closed>": 96514,
10
+ "<issue_comment>": 96513,
11
+ "<issue_start>": 96512,
12
+ "<jupyter_code>": 96517,
13
+ "<jupyter_output>": 96518,
14
+ "<jupyter_script>": 96519,
15
+ "<jupyter_start>": 96515,
16
+ "<jupyter_text>": 96516,
17
+ "<pr>": 96523,
18
+ "<pr_base>": 96526,
19
+ "<pr_base_code>": 96528,
20
+ "<pr_comment>": 96531,
21
+ "<pr_diff>": 96529,
22
+ "<pr_diff_hunk>": 96530,
23
+ "<pr_diff_hunk_comment_line>": 96538,
24
+ "<pr_event_id>": 96532,
25
+ "<pr_file>": 96527,
26
+ "<pr_in_reply_to_comment_id>": 96537,
27
+ "<pr_in_reply_to_review_id>": 96536,
28
+ "<pr_is_merged>": 96525,
29
+ "<pr_review>": 96533,
30
+ "<pr_review_comment>": 96535,
31
+ "<pr_review_state>": 96534,
32
+ "<pr_status>": 96524,
33
+ "<repo_name>": 96510,
34
+ "<|endoftext|>": 96506,
35
+ "<|end|>": 96500,
36
+ "<|im_end|>": 96539,
37
+ "<|im_start|>": 96540,
38
+ "<|message|>": 96501,
39
+ "<|pad|>": 96505,
40
+ "<|start|>": 96499,
41
+ "<|tool_end|>": 96504,
42
+ "<|tool_excute|>": 96503,
43
+ "<|tool_start|>": 96502
44
+ }
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 96539,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 2240,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 6144,
13
+ "max_position_embeddings": 4096,
14
+ "mlp_bias": false,
15
+ "model_type": "llama",
16
+ "num_attention_heads": 14,
17
+ "num_hidden_layers": 24,
18
+ "num_key_value_heads": 14,
19
+ "pretraining_tp": 1,
20
+ "rms_norm_eps": 1e-05,
21
+ "rope_scaling": null,
22
+ "rope_theta": 10000.0,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.44.2",
26
+ "use_cache": true,
27
+ "vocab_size": 96640
28
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7289efa40bc6caec7853851045f493f428a39e5daf647005350a0f6833cabc6f
3
+ size 3811365114
special_tokens_map.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ {
4
+ "content": "<|im_end|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ {
11
+ "content": "<|im_start|>",
12
+ "lstrip": false,
13
+ "normalized": false,
14
+ "rstrip": false,
15
+ "single_word": false
16
+ }
17
+ ],
18
+ "bos_token": {
19
+ "content": "<s>",
20
+ "lstrip": false,
21
+ "normalized": false,
22
+ "rstrip": false,
23
+ "single_word": false
24
+ },
25
+ "eos_token": {
26
+ "content": "</s>",
27
+ "lstrip": false,
28
+ "normalized": false,
29
+ "rstrip": false,
30
+ "single_word": false
31
+ },
32
+ "pad_token": {
33
+ "content": "<pad>",
34
+ "lstrip": false,
35
+ "normalized": false,
36
+ "rstrip": false,
37
+ "single_word": false
38
+ },
39
+ "unk_token": {
40
+ "content": "<unk>",
41
+ "lstrip": false,
42
+ "normalized": false,
43
+ "rstrip": false,
44
+ "single_word": false
45
+ }
46
+ }
tokenization_inflm.py ADDED
@@ -0,0 +1,292 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+
21
+ """Tokenization classes for INFLMTokenizer."""
22
+ import os
23
+ from shutil import copyfile
24
+ from typing import Any, Dict, List, Optional, Tuple
25
+
26
+ import sentencepiece as spm
27
+
28
+ from transformers.tokenization_utils import PreTrainedTokenizer
29
+ from transformers.utils import logging
30
+
31
+ from tokenizers import pre_tokenizers,Regex,decoders
32
+ from tokenizers.pre_tokenizers import Digits, Split, ByteLevel
33
+ import os
34
+
35
+ # same as gpt4 cl-base-100k
36
+ PATTERN = Regex("(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+\s+(\S)+")
37
+
38
+ logger = logging.get_logger(__name__)
39
+
40
+ VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
41
+
42
+ PRETRAINED_VOCAB_FILES_MAP = {}
43
+
44
+
45
+ class INFLMTokenizer(PreTrainedTokenizer):
46
+ """
47
+ Construct a INFLMTokenizer tokenizer based on sentence-piece
48
+
49
+ Args:
50
+ vocab_file (`str`):
51
+ Path to the vocabulary file.
52
+ """
53
+
54
+ vocab_files_names = VOCAB_FILES_NAMES
55
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
56
+ model_input_names = ["input_ids", "attention_mask"]
57
+ _auto_class = "AutoTokenizer"
58
+
59
+ def __init__(
60
+ self,
61
+ vocab_file,
62
+ unk_token="<unk>",
63
+ bos_token="<s>",
64
+ eos_token="</s>",
65
+ pad_token="<pad>",
66
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
67
+ add_bos_token=False,
68
+ add_eos_token=False,
69
+ decode_with_prefix_space=False,
70
+ clean_up_tokenization_spaces=False,
71
+ spaces_between_special_tokens=False,
72
+ **kwargs,
73
+ ):
74
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
75
+ self.vocab_file = vocab_file
76
+ self.add_bos_token = add_bos_token
77
+ self.add_eos_token = add_eos_token
78
+ self.decode_with_prefix_space = decode_with_prefix_space
79
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
80
+ self.sp_model.Load(vocab_file)
81
+ self._no_prefix_space_tokens = None
82
+ self.pre_tokenizer = pre_tokenizers.Sequence([Split(pattern =PATTERN,behavior = "isolated", invert = False)])
83
+ super().__init__(
84
+ bos_token=bos_token,
85
+ eos_token=eos_token,
86
+ unk_token=unk_token,
87
+ pad_token=pad_token,
88
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
89
+ spaces_between_special_tokens=spaces_between_special_tokens,
90
+ **kwargs,
91
+ )
92
+
93
+ """ Initialisation"""
94
+
95
+ @property
96
+ def no_prefix_space_tokens(self):
97
+ if self._no_prefix_space_tokens is None:
98
+ vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
99
+ self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")}
100
+ return self._no_prefix_space_tokens
101
+
102
+ @property
103
+ def vocab_size(self):
104
+ """Returns vocab size"""
105
+ return self.sp_model.get_piece_size()
106
+
107
+ @property
108
+ def bos_token_id(self) -> Optional[int]:
109
+ return self.sp_model.bos_id()
110
+
111
+ @property
112
+ def eos_token_id(self) -> Optional[int]:
113
+ return self.sp_model.eos_id()
114
+
115
+ def get_vocab(self):
116
+ """Returns vocab as a dict"""
117
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
118
+ vocab.update(self.added_tokens_encoder)
119
+ return vocab
120
+
121
+ def _tokenize(self, text):
122
+ """Returns a tokenized string."""
123
+
124
+ splits = self.pre_tokenizer.pre_tokenize_str(text)
125
+ texts=[]
126
+
127
+ for split in splits:
128
+ texts.extend(self.sp_model.encode(split[0], out_type=str))
129
+ return texts
130
+
131
+ def _convert_token_to_id(self, token):
132
+ """Converts a token (str) in an id using the vocab."""
133
+
134
+ return self.sp_model.piece_to_id(token)
135
+
136
+ def _convert_id_to_token(self, index):
137
+ """Converts an index (integer) in a token (str) using the vocab."""
138
+ token = self.sp_model.IdToPiece(index)
139
+ return token
140
+
141
+ def _maybe_add_prefix_space(self, tokens, decoded):
142
+ if tokens and tokens[0] not in self.no_prefix_space_tokens:
143
+ return " " + decoded
144
+ else:
145
+ return decoded
146
+
147
+ def convert_tokens_to_string(self, tokens):
148
+ """Converts a sequence of tokens (string) in a single string."""
149
+ current_sub_tokens = []
150
+ out_string = ""
151
+ prev_is_special = False
152
+ for token in tokens:
153
+ # make sure that special tokens are not decoded using sentencepiece model
154
+ if token in self.all_special_tokens:
155
+ out_string += self.sp_model.decode(current_sub_tokens) + token
156
+ prev_is_special = True
157
+ current_sub_tokens = []
158
+ else:
159
+ current_sub_tokens.append(token)
160
+ prev_is_special = False
161
+ out_string += self.sp_model.decode(current_sub_tokens)
162
+
163
+ return out_string
164
+
165
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
166
+ """
167
+ Save the vocabulary and special tokens file to a directory.
168
+
169
+ Args:
170
+ save_directory (`str`):
171
+ The directory in which to save the vocabulary.
172
+
173
+ Returns:
174
+ `Tuple(str)`: Paths to the files saved.
175
+ """
176
+ if not os.path.isdir(save_directory):
177
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
178
+ return
179
+ out_vocab_file = os.path.join(
180
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
181
+ )
182
+
183
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
184
+ copyfile(self.vocab_file, out_vocab_file)
185
+ elif not os.path.isfile(self.vocab_file):
186
+ with open(out_vocab_file, "wb") as fi:
187
+ content_spiece_model = self.sp_model.serialized_model_proto()
188
+ fi.write(content_spiece_model)
189
+
190
+ return (out_vocab_file,)
191
+
192
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
193
+ if self.add_bos_token:
194
+ bos_token_ids = [self.bos_token_id]
195
+ else:
196
+ bos_token_ids = []
197
+
198
+ output = bos_token_ids + token_ids_0
199
+
200
+ if token_ids_1 is not None:
201
+ output = output + token_ids_1
202
+
203
+ if self.add_eos_token:
204
+ output = output + [self.eos_token_id]
205
+
206
+ return output
207
+
208
+ def get_special_tokens_mask(
209
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
210
+ ) -> List[int]:
211
+ """
212
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
213
+ special tokens using the tokenizer `prepare_for_model` method.
214
+
215
+ Args:
216
+ token_ids_0 (`List[int]`):
217
+ List of IDs.
218
+ token_ids_1 (`List[int]`, *optional*):
219
+ Optional second list of IDs for sequence pairs.
220
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
221
+ Whether or not the token list is already formatted with special tokens for the model.
222
+
223
+ Returns:
224
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
225
+ """
226
+ if already_has_special_tokens:
227
+ return super().get_special_tokens_mask(
228
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
229
+ )
230
+
231
+ eos_token_id = [1] if self.add_eos_token else []
232
+ if token_ids_1 is None:
233
+ return ([0] * len(token_ids_0)) + eos_token_id
234
+ return ([0] * len(token_ids_0)) + eos_token_id + ([0] * len(token_ids_1)) + eos_token_id
235
+
236
+
237
+ def create_token_type_ids_from_sequences(
238
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
239
+ ) -> List[int]:
240
+ """
241
+ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
242
+ sequence pair mask has the following format:
243
+
244
+ ```
245
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
246
+ | first sequence | second sequence |
247
+ ```
248
+
249
+ if token_ids_1 is None, only returns the first portion of the mask (0s).
250
+
251
+ Note this is only used for back compatiblity, thus list of zero is returned.
252
+
253
+ Args:
254
+ token_ids_0 (`List[int]`):
255
+ List of ids.
256
+ token_ids_1 (`List[int]`, *optional*):
257
+ Optional second list of IDs for sequence pairs.
258
+
259
+ Returns:
260
+ `List[int]`: List of zeros.
261
+ """
262
+ eos = [self.eos_token_id]
263
+
264
+ if token_ids_1 is None:
265
+ return len(token_ids_0 + eos) * [0]
266
+ return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
267
+
268
+
269
+ @property
270
+ def default_chat_template(self):
271
+ return None
272
+
273
+
274
+ def decode(
275
+ self,
276
+ token_ids,
277
+ skip_special_tokens: bool = False,
278
+ clean_up_tokenization_spaces: Optional[bool] = False,
279
+ spaces_between_special_tokens: bool = False,
280
+ **kwargs,
281
+ ) -> str:
282
+ # default spaces_between_special_tokens should be false.
283
+ if spaces_between_special_tokens:
284
+ logger.warning_once('spaces_between_special_tokens is set. \
285
+ It has no effect for bos,eos,pad,unk when transformers<=4.38.')
286
+ return super().decode(
287
+ token_ids,
288
+ skip_special_tokens=skip_special_tokens,
289
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
290
+ spaces_between_special_tokens=spaces_between_special_tokens,
291
+ **kwargs,
292
+ )
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76d43d618fc0c5a7c79dc4e72579f9f29bb803b36e4a4d709d1233626fd8fe2a
3
+ size 1535725
tokenizer_config.json ADDED
@@ -0,0 +1,393 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<unk>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<s>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<pad>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "96499": {
37
+ "content": "<|start|>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "96500": {
45
+ "content": "<|end|>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "96501": {
53
+ "content": "<|message|>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "96502": {
61
+ "content": "<|tool_start|>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "96503": {
69
+ "content": "<|tool_excute|>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "96504": {
77
+ "content": "<|tool_end|>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "96505": {
85
+ "content": "<|pad|>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "96506": {
93
+ "content": "<|endoftext|>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "96507": {
101
+ "content": "<fim_prefix>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "96508": {
109
+ "content": "<fim_middle>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ },
116
+ "96509": {
117
+ "content": "<fim_suffix>",
118
+ "lstrip": false,
119
+ "normalized": false,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": true
123
+ },
124
+ "96510": {
125
+ "content": "<repo_name>",
126
+ "lstrip": false,
127
+ "normalized": false,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": true
131
+ },
132
+ "96511": {
133
+ "content": "<file_sep>",
134
+ "lstrip": false,
135
+ "normalized": false,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": true
139
+ },
140
+ "96512": {
141
+ "content": "<issue_start>",
142
+ "lstrip": false,
143
+ "normalized": false,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": true
147
+ },
148
+ "96513": {
149
+ "content": "<issue_comment>",
150
+ "lstrip": false,
151
+ "normalized": false,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": true
155
+ },
156
+ "96514": {
157
+ "content": "<issue_closed>",
158
+ "lstrip": false,
159
+ "normalized": false,
160
+ "rstrip": false,
161
+ "single_word": false,
162
+ "special": true
163
+ },
164
+ "96515": {
165
+ "content": "<jupyter_start>",
166
+ "lstrip": false,
167
+ "normalized": false,
168
+ "rstrip": false,
169
+ "single_word": false,
170
+ "special": true
171
+ },
172
+ "96516": {
173
+ "content": "<jupyter_text>",
174
+ "lstrip": false,
175
+ "normalized": false,
176
+ "rstrip": false,
177
+ "single_word": false,
178
+ "special": true
179
+ },
180
+ "96517": {
181
+ "content": "<jupyter_code>",
182
+ "lstrip": false,
183
+ "normalized": false,
184
+ "rstrip": false,
185
+ "single_word": false,
186
+ "special": true
187
+ },
188
+ "96518": {
189
+ "content": "<jupyter_output>",
190
+ "lstrip": false,
191
+ "normalized": false,
192
+ "rstrip": false,
193
+ "single_word": false,
194
+ "special": true
195
+ },
196
+ "96519": {
197
+ "content": "<jupyter_script>",
198
+ "lstrip": false,
199
+ "normalized": false,
200
+ "rstrip": false,
201
+ "single_word": false,
202
+ "special": true
203
+ },
204
+ "96520": {
205
+ "content": "<empty_output>",
206
+ "lstrip": false,
207
+ "normalized": false,
208
+ "rstrip": false,
209
+ "single_word": false,
210
+ "special": true
211
+ },
212
+ "96521": {
213
+ "content": "<code_to_intermediate>",
214
+ "lstrip": false,
215
+ "normalized": false,
216
+ "rstrip": false,
217
+ "single_word": false,
218
+ "special": true
219
+ },
220
+ "96522": {
221
+ "content": "<intermediate_to_code>",
222
+ "lstrip": false,
223
+ "normalized": false,
224
+ "rstrip": false,
225
+ "single_word": false,
226
+ "special": true
227
+ },
228
+ "96523": {
229
+ "content": "<pr>",
230
+ "lstrip": false,
231
+ "normalized": false,
232
+ "rstrip": false,
233
+ "single_word": false,
234
+ "special": true
235
+ },
236
+ "96524": {
237
+ "content": "<pr_status>",
238
+ "lstrip": false,
239
+ "normalized": false,
240
+ "rstrip": false,
241
+ "single_word": false,
242
+ "special": true
243
+ },
244
+ "96525": {
245
+ "content": "<pr_is_merged>",
246
+ "lstrip": false,
247
+ "normalized": false,
248
+ "rstrip": false,
249
+ "single_word": false,
250
+ "special": true
251
+ },
252
+ "96526": {
253
+ "content": "<pr_base>",
254
+ "lstrip": false,
255
+ "normalized": false,
256
+ "rstrip": false,
257
+ "single_word": false,
258
+ "special": true
259
+ },
260
+ "96527": {
261
+ "content": "<pr_file>",
262
+ "lstrip": false,
263
+ "normalized": false,
264
+ "rstrip": false,
265
+ "single_word": false,
266
+ "special": true
267
+ },
268
+ "96528": {
269
+ "content": "<pr_base_code>",
270
+ "lstrip": false,
271
+ "normalized": false,
272
+ "rstrip": false,
273
+ "single_word": false,
274
+ "special": true
275
+ },
276
+ "96529": {
277
+ "content": "<pr_diff>",
278
+ "lstrip": false,
279
+ "normalized": false,
280
+ "rstrip": false,
281
+ "single_word": false,
282
+ "special": true
283
+ },
284
+ "96530": {
285
+ "content": "<pr_diff_hunk>",
286
+ "lstrip": false,
287
+ "normalized": false,
288
+ "rstrip": false,
289
+ "single_word": false,
290
+ "special": true
291
+ },
292
+ "96531": {
293
+ "content": "<pr_comment>",
294
+ "lstrip": false,
295
+ "normalized": false,
296
+ "rstrip": false,
297
+ "single_word": false,
298
+ "special": true
299
+ },
300
+ "96532": {
301
+ "content": "<pr_event_id>",
302
+ "lstrip": false,
303
+ "normalized": false,
304
+ "rstrip": false,
305
+ "single_word": false,
306
+ "special": true
307
+ },
308
+ "96533": {
309
+ "content": "<pr_review>",
310
+ "lstrip": false,
311
+ "normalized": false,
312
+ "rstrip": false,
313
+ "single_word": false,
314
+ "special": true
315
+ },
316
+ "96534": {
317
+ "content": "<pr_review_state>",
318
+ "lstrip": false,
319
+ "normalized": false,
320
+ "rstrip": false,
321
+ "single_word": false,
322
+ "special": true
323
+ },
324
+ "96535": {
325
+ "content": "<pr_review_comment>",
326
+ "lstrip": false,
327
+ "normalized": false,
328
+ "rstrip": false,
329
+ "single_word": false,
330
+ "special": true
331
+ },
332
+ "96536": {
333
+ "content": "<pr_in_reply_to_review_id>",
334
+ "lstrip": false,
335
+ "normalized": false,
336
+ "rstrip": false,
337
+ "single_word": false,
338
+ "special": true
339
+ },
340
+ "96537": {
341
+ "content": "<pr_in_reply_to_comment_id>",
342
+ "lstrip": false,
343
+ "normalized": false,
344
+ "rstrip": false,
345
+ "single_word": false,
346
+ "special": true
347
+ },
348
+ "96538": {
349
+ "content": "<pr_diff_hunk_comment_line>",
350
+ "lstrip": false,
351
+ "normalized": false,
352
+ "rstrip": false,
353
+ "single_word": false,
354
+ "special": true
355
+ },
356
+ "96539": {
357
+ "content": "<|im_end|>",
358
+ "lstrip": false,
359
+ "normalized": false,
360
+ "rstrip": false,
361
+ "single_word": false,
362
+ "special": true
363
+ },
364
+ "96540": {
365
+ "content": "<|im_start|>",
366
+ "lstrip": false,
367
+ "normalized": false,
368
+ "rstrip": false,
369
+ "single_word": false,
370
+ "special": true
371
+ }
372
+ },
373
+ "additional_special_tokens": [
374
+ "<|im_end|>",
375
+ "<|im_start|>"
376
+ ],
377
+ "auto_map": {
378
+ "AutoTokenizer": [
379
+ "tokenization_inflm.INFLMTokenizer",
380
+ null
381
+ ]
382
+ },
383
+ "bos_token": "<s>",
384
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are OpenCoder, created by OpenCoder Team.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
385
+ "clean_up_tokenization_spaces": false,
386
+ "eos_token": "<|im_end|>",
387
+ "model_max_length": 1000000000000000019884624838656,
388
+ "pad_token": "<pad>",
389
+ "return_tensors": true,
390
+ "spaces_between_special_tokens": false,
391
+ "tokenizer_class": "INFLMTokenizer",
392
+ "unk_token": "<unk>"
393
+ }