File size: 2,679 Bytes
a6e8d57
 
90d66ba
a6e8d57
90d66ba
 
 
 
a5d9ae7
90d66ba
3e7f332
a6e8d57
08fd86d
a6e8d57
492c67f
 
3e7f332
 
492c67f
 
 
 
 
 
3e7f332
 
 
 
 
 
a6e8d57
 
 
 
f405841
a6e8d57
b0b1764
 
 
a6e8d57
 
 
 
 
 
 
 
 
 
 
90d66ba
 
 
08fd86d
90d66ba
a6e8d57
 
 
 
 
 
f405841
 
a6e8d57
 
f405841
a6e8d57
 
 
 
 
 
 
 
 
 
f405841
 
 
 
 
 
 
 
 
 
 
 
 
 
a6e8d57
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---
license: apache-2.0
language: as
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning
- as
- robust-speech-event
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_7_0
model-index:
- name: XLS-R-300M - Assamese
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 7
      type: mozilla-foundation/common_voice_7_0
      args: as
    metrics:
    - name: Test WER
      type: wer
      value: 72.64
    - name: Test CER
      type: cer
      value: 27.35
---

# wav2vec2-large-xls-r-300m-assamese

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_7_0 dataset.
It achieves the following results on the evaluation set:

- WER: 0.7954545454545454
- CER: 0.32341269841269843

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

To compute the evaluation parameters

```bash
cd wav2vec2-large-xls-r-300m-assamese; python eval.py --model_id ./ --dataset mozilla-foundation/common_voice_7_0 --config as --split test --log_outputs
```

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:

- learning_rate: 3e-4
- train_batch_size: 16
- eval_batch_size: 8
- seed: not given
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 400
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer      |
|:-------------:|:------:|:----:|:---------------:|:------:  |
| 1.584065      | NA     | 400  | 1.584065        | 0.915512 |
| 1.658865      | Na     | 800  | 1.658865        | 0.805096 |
| 1.882352      | NA     | 1200 | 1.882352        | 0.820742 |
| 1.881240      | NA     | 1600 | 1.881240        | 0.810907 |
| 2.159748      | NA     | 2000 | 2.159748        | 0.804202 |
| 1.992871      | NA     | 2400 | 1.992871        | 0.803308 |
| 2.201436      | NA     | 2800 | 2.201436        | 0.802861 |
| 2.165218      | NA     | 3200 | 2.165218        | 0.793920 |
| 2.253643      | NA     | 3600 | 2.253643        | 0.796603 |
| 2.265880      | NA     | 4000 | 2.265880        | 0.790344 |
| 2.293935      | NA     | 4400 | 2.293935        | 0.797050 |
| 2.288851      | NA     | 4800 | 2.288851        | 0.784086 |


### Framework versions

- Transformers 4.11.3
- Pytorch 1.10.0+cu113
- Datasets 1.13.3
- Tokenizers 0.10.3