--- base_model: meta-llama/Meta-Llama-3.1-8B-Instruct library_name: peft license: llama3.1 tags: - unsloth - generated_from_trainer model-index: - name: l3.1-8b-ins-magiccoder results: [] --- # l3.1-8b-ins-magiccoder This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2331 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.02 - num_epochs: 0.56 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.4834 | 0.0130 | 2 | 1.3970 | | 1.2584 | 0.0259 | 4 | 1.3753 | | 1.2988 | 0.0389 | 6 | 1.3373 | | 1.3458 | 0.0518 | 8 | 1.3058 | | 1.2461 | 0.0648 | 10 | 1.2893 | | 1.263 | 0.0777 | 12 | 1.2828 | | 1.2758 | 0.0907 | 14 | 1.2782 | | 1.2802 | 0.1036 | 16 | 1.2702 | | 1.137 | 0.1166 | 18 | 1.2617 | | 1.336 | 0.1296 | 20 | 1.2531 | | 1.1811 | 0.1425 | 22 | 1.2466 | | 1.1447 | 0.1555 | 24 | 1.2441 | | 1.177 | 0.1684 | 26 | 1.2426 | | 1.2585 | 0.1814 | 28 | 1.2404 | | 1.1993 | 0.1943 | 30 | 1.2381 | | 1.1566 | 0.2073 | 32 | 1.2370 | | 1.2826 | 0.2202 | 34 | 1.2364 | | 1.1512 | 0.2332 | 36 | 1.2356 | | 1.1779 | 0.2462 | 38 | 1.2352 | | 1.261 | 0.2591 | 40 | 1.2346 | | 1.1998 | 0.2721 | 42 | 1.2341 | | 1.1847 | 0.2850 | 44 | 1.2335 | | 1.1266 | 0.2980 | 46 | 1.2336 | | 1.1699 | 0.3109 | 48 | 1.2336 | | 1.283 | 0.3239 | 50 | 1.2332 | | 1.2469 | 0.3368 | 52 | 1.2331 | | 1.1653 | 0.3498 | 54 | 1.2330 | | 1.2752 | 0.3628 | 56 | 1.2332 | | 1.2077 | 0.3757 | 58 | 1.2331 | | 1.1729 | 0.3887 | 60 | 1.2330 | | 1.2643 | 0.4016 | 62 | 1.2331 | | 1.3324 | 0.4146 | 64 | 1.2331 | | 1.2215 | 0.4275 | 66 | 1.2332 | | 1.2623 | 0.4405 | 68 | 1.2332 | | 1.2845 | 0.4534 | 70 | 1.2331 | | 1.1966 | 0.4664 | 72 | 1.2331 | | 1.2389 | 0.4794 | 74 | 1.2331 | | 1.1957 | 0.4923 | 76 | 1.2331 | | 1.2684 | 0.5053 | 78 | 1.2331 | | 1.3217 | 0.5182 | 80 | 1.2331 | | 1.3126 | 0.5312 | 82 | 1.2331 | | 1.2146 | 0.5441 | 84 | 1.2330 | | 1.216 | 0.5571 | 86 | 1.2331 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.2 - Pytorch 2.3.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1