--- license: mit --- # {UTDRM-MPNet} This is the UTDRM-MPNet model from the paper UTDRM: Unsupervised Method for Training Debunked-narrative Retrieval Models. Please consider citing the following paper if you use this model. ``` @article{singh2023utdrm, title={UTDRM: unsupervised method for training debunked-narrative retrieval models}, author={Singh, Iknoor and Scarton, Carolina and Bontcheva, Kalina}, journal={EPJ Data Science}, volume={12}, number={1}, pages={59}, year={2023}, publisher={Springer} } ``` ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ```