File size: 2,674 Bytes
4c6aa59
 
 
5689e74
4c6aa59
05f48a0
 
 
4c6aa59
 
 
 
 
 
 
 
 
 
 
05f48a0
 
 
4c6aa59
 
 
d1c7a63
4c6aa59
 
 
 
 
 
 
5689e74
4c6aa59
5689e74
d1c7a63
 
4c6aa59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99f96ae
 
 
4c6aa59
99f96ae
4c6aa59
 
 
a30593b
99f96ae
4c6aa59
 
 
 
e778dac
 
 
 
 
 
 
 
 
9086a59
14f6058
a30593b
99f96ae
 
4c6aa59
 
 
 
 
e778dac
4c6aa59
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
license: apache-2.0
tags:
- google/fleurs
- generated_from_trainer
- automatic-speech-recognition
- pashto
- ps
datasets:
- fleurs
metrics:
- wer
model-index:
- name: facebook/wav2vec2-xls-r-300m
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: google/fleurs
      type: google/fleurs
      args: 'config: ps_af, split: test'
    metrics:
    - name: Wer
      type: wer
      value: 51.59447476125512
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# facebook/wav2vec2-xls-r-300m

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the GOOGLE/FLEURS - PS_AF dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9162
- Wer: 51.59
- Cer: 19.72

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7.5e-07
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 6000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Cer    | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:------:|:---------------:|:------:|
| 5.0767        | 6.33  | 500  | 1.0    | 4.8783          | 1.0    |
| 3.1156        | 12.66 | 1000 | 1.0    | 3.0990          | 1.0    |
| 1.3506        | 18.99 | 1500 | 0.2889 | 1.1056          | 0.7031 |
| 0.9997        | 25.32 | 2000 | 0.2301 | 0.9191          | 0.5944 |
| 0.7838        | 31.65 | 2500 | 0.2152 | 0.8952          | 0.5556 |
| 0.6665        | 37.97 | 3000 | 0.2017 | 0.8908          | 0.5252 |
| 0.6265        | 44.3  | 3500 | 0.1954 | 0.9063          | 0.5133 |
| 0.5935        | 50.63 | 4000 | 0.1969 | 0.9162          | 0.5156 |
| 0.5174        | 56.96 | 4500 | 0.1972 | 0.9287          | 0.5140 |
| 0.5462        | 63.29 | 5000 | 0.1974 | 0.9370          | 0.5138 |
| 0.5564        | 69.62 | 5500 | 0.1977 | 0.9461          | 0.5148 |
| 0.5252        | 75.95 | 6000 | 0.9505 | 0.5118          | 0.1969 |


### Framework versions

- Transformers 4.26.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2