add wav2vec asr without language model
Browse files- README.md +93 -0
- added_tokens.json +4 -0
- all_results.json +15 -0
- config.json +107 -0
- eval.py +146 -0
- eval_results.json +10 -0
- google_fleurs_ps_af_test_eval_results.txt +2 -0
- log_google_fleurs_ps_af_test_predictions.txt +0 -0
- log_google_fleurs_ps_af_test_targets.txt +0 -0
- preprocessor_config.json +9 -0
- pytorch_model.bin +3 -0
- run.sh +33 -0
- run_2.sh +35 -0
- run_3.sh +34 -0
- run_speech_recognition_ctc.py +772 -0
- runs/Dec14_13-29-56_129-213-22-31/1671025286.7583845/events.out.tfevents.1671025286.129-213-22-31.83694.1 +3 -0
- runs/Dec14_13-29-56_129-213-22-31/events.out.tfevents.1671025286.129-213-22-31.83694.0 +3 -0
- runs/Dec14_13-29-56_129-213-22-31/events.out.tfevents.1671041124.129-213-22-31.83694.2 +3 -0
- runs/Dec16_13-55-02_129-146-104-29/1671199202.2565184/events.out.tfevents.1671199202.129-146-104-29.128095.1 +3 -0
- runs/Dec16_13-55-02_129-146-104-29/events.out.tfevents.1671199202.129-146-104-29.128095.0 +3 -0
- runs/Dec16_13-55-02_129-146-104-29/events.out.tfevents.1671201437.129-146-104-29.128095.2 +3 -0
- runs/Dec16_14-39-42_129-146-104-29/1671201754.79521/events.out.tfevents.1671201754.129-146-104-29.129288.1 +3 -0
- runs/Dec16_14-39-42_129-146-104-29/events.out.tfevents.1671201754.129-146-104-29.129288.0 +3 -0
- runs/Dec16_14-39-42_129-146-104-29/events.out.tfevents.1671204006.129-146-104-29.129288.2 +3 -0
- runs/Dec16_15-29-40_129-146-104-29/1671204751.2903225/events.out.tfevents.1671204751.129-146-104-29.131453.1 +3 -0
- runs/Dec16_15-29-40_129-146-104-29/events.out.tfevents.1671204751.129-146-104-29.131453.0 +3 -0
- runs/Dec16_15-39-46_129-146-104-29/1671205356.7546594/events.out.tfevents.1671205356.129-146-104-29.131763.1 +3 -0
- runs/Dec16_15-39-46_129-146-104-29/events.out.tfevents.1671205356.129-146-104-29.131763.0 +3 -0
- runs/Dec16_15-39-46_129-146-104-29/events.out.tfevents.1671207700.129-146-104-29.131763.2 +3 -0
- runs/Dec16_20-12-50_129-146-104-29/1671221741.6851091/events.out.tfevents.1671221741.129-146-104-29.144289.1 +3 -0
- runs/Dec16_20-12-50_129-146-104-29/events.out.tfevents.1671221741.129-146-104-29.144289.0 +3 -0
- runs/Dec16_20-12-50_129-146-104-29/events.out.tfevents.1671223965.129-146-104-29.144289.2 +3 -0
- runs/Dec16_20-56-58_129-146-104-29/1671224389.6246047/events.out.tfevents.1671224389.129-146-104-29.146388.1 +3 -0
- runs/Dec16_20-56-58_129-146-104-29/events.out.tfevents.1671224389.129-146-104-29.146388.0 +3 -0
- runs/Dec16_21-09-39_129-146-104-29/1671225152.348097/events.out.tfevents.1671225152.129-146-104-29.146624.1 +3 -0
- runs/Dec16_21-09-39_129-146-104-29/events.out.tfevents.1671225152.129-146-104-29.146624.0 +3 -0
- runs/Dec16_21-09-39_129-146-104-29/events.out.tfevents.1671227491.129-146-104-29.146624.2 +3 -0
- special_tokens_map.json +120 -0
- tokenizer_config.json +13 -0
- train_results.json +8 -0
- trainer_state.json +3745 -0
- training_args.bin +3 -0
- vocab.json +117 -0
README.md
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- google/fleurs
|
5 |
+
- generated_from_trainer
|
6 |
+
- automatic-speech-recognition
|
7 |
+
- hf-asr-leaderboard
|
8 |
+
- pashto
|
9 |
+
- ps
|
10 |
+
datasets:
|
11 |
+
- fleurs
|
12 |
+
metrics:
|
13 |
+
- wer
|
14 |
+
model-index:
|
15 |
+
- name: facebook/wav2vec2-xls-r-300m
|
16 |
+
results:
|
17 |
+
- task:
|
18 |
+
name: Automatic Speech Recognition
|
19 |
+
type: automatic-speech-recognition
|
20 |
+
dataset:
|
21 |
+
name: google/fleurs
|
22 |
+
type: google/fleurs
|
23 |
+
args: 'config: ps_af, split: test'
|
24 |
+
metrics:
|
25 |
+
- name: Wer
|
26 |
+
type: wer
|
27 |
+
value: 0.5159447476125512
|
28 |
+
---
|
29 |
+
|
30 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
31 |
+
should probably proofread and complete it, then remove this comment. -->
|
32 |
+
|
33 |
+
# facebook/wav2vec2-xls-r-300m
|
34 |
+
|
35 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the GOOGLE/FLEURS - PS_AF dataset.
|
36 |
+
It achieves the following results on the evaluation set:
|
37 |
+
- Loss: 0.9162
|
38 |
+
- Wer: 0.5159
|
39 |
+
- Cer: 0.1972
|
40 |
+
|
41 |
+
## Model description
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Intended uses & limitations
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training and evaluation data
|
50 |
+
|
51 |
+
More information needed
|
52 |
+
|
53 |
+
## Training procedure
|
54 |
+
|
55 |
+
### Training hyperparameters
|
56 |
+
|
57 |
+
The following hyperparameters were used during training:
|
58 |
+
- learning_rate: 7.5e-07
|
59 |
+
- train_batch_size: 16
|
60 |
+
- eval_batch_size: 16
|
61 |
+
- seed: 42
|
62 |
+
- gradient_accumulation_steps: 2
|
63 |
+
- total_train_batch_size: 32
|
64 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
65 |
+
- lr_scheduler_type: linear
|
66 |
+
- lr_scheduler_warmup_steps: 1000
|
67 |
+
- training_steps: 6000
|
68 |
+
- mixed_precision_training: Native AMP
|
69 |
+
|
70 |
+
### Training results
|
71 |
+
|
72 |
+
| Training Loss | Epoch | Step | Cer | Validation Loss | Wer |
|
73 |
+
|:-------------:|:-----:|:----:|:------:|:---------------:|:------:|
|
74 |
+
| 5.0767 | 6.33 | 500 | 1.0 | 4.8783 | 1.0 |
|
75 |
+
| 3.1156 | 12.66 | 1000 | 1.0 | 3.0990 | 1.0 |
|
76 |
+
| 1.3506 | 18.99 | 1500 | 0.2889 | 1.1056 | 0.7031 |
|
77 |
+
| 0.9997 | 25.32 | 2000 | 0.2301 | 0.9191 | 0.5944 |
|
78 |
+
| 0.7838 | 31.65 | 2500 | 0.2152 | 0.8952 | 0.5556 |
|
79 |
+
| 0.6665 | 37.97 | 3000 | 0.2017 | 0.8908 | 0.5252 |
|
80 |
+
| 0.6265 | 44.3 | 3500 | 0.1954 | 0.9063 | 0.5133 |
|
81 |
+
| 0.5935 | 50.63 | 4000 | 0.1969 | 0.9162 | 0.5156 |
|
82 |
+
| 0.5174 | 56.96 | 4500 | 0.1972 | 0.9287 | 0.5140 |
|
83 |
+
| 0.5462 | 63.29 | 5000 | 0.1974 | 0.9370 | 0.5138 |
|
84 |
+
| 0.5564 | 69.62 | 5500 | 0.1977 | 0.9461 | 0.5148 |
|
85 |
+
| 0.5252 | 75.95 | 6000 | 0.9505 | 0.5118 | 0.1969 |
|
86 |
+
|
87 |
+
|
88 |
+
### Framework versions
|
89 |
+
|
90 |
+
- Transformers 4.26.0.dev0
|
91 |
+
- Pytorch 1.13.1+cu117
|
92 |
+
- Datasets 2.7.1.dev0
|
93 |
+
- Tokenizers 0.13.2
|
added_tokens.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</s>": 116,
|
3 |
+
"<s>": 115
|
4 |
+
}
|
all_results.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 75.95,
|
3 |
+
"eval_cer": 0.1972293657199707,
|
4 |
+
"eval_loss": 0.9162325859069824,
|
5 |
+
"eval_runtime": 45.3436,
|
6 |
+
"eval_samples": 481,
|
7 |
+
"eval_samples_per_second": 10.608,
|
8 |
+
"eval_steps_per_second": 0.684,
|
9 |
+
"eval_wer": 0.5159447476125512,
|
10 |
+
"train_loss": 0.044292491674423215,
|
11 |
+
"train_runtime": 2233.4842,
|
12 |
+
"train_samples": 2528,
|
13 |
+
"train_samples_per_second": 85.964,
|
14 |
+
"train_steps_per_second": 2.686
|
15 |
+
}
|
config.json
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/wav2vec2-xls-r-300m",
|
3 |
+
"activation_dropout": 0.1,
|
4 |
+
"adapter_kernel_size": 3,
|
5 |
+
"adapter_stride": 2,
|
6 |
+
"add_adapter": false,
|
7 |
+
"apply_spec_augment": true,
|
8 |
+
"architectures": [
|
9 |
+
"Wav2Vec2ForCTC"
|
10 |
+
],
|
11 |
+
"attention_dropout": 0.0,
|
12 |
+
"bos_token_id": 1,
|
13 |
+
"classifier_proj_size": 256,
|
14 |
+
"codevector_dim": 768,
|
15 |
+
"contrastive_logits_temperature": 0.1,
|
16 |
+
"conv_bias": true,
|
17 |
+
"conv_dim": [
|
18 |
+
512,
|
19 |
+
512,
|
20 |
+
512,
|
21 |
+
512,
|
22 |
+
512,
|
23 |
+
512,
|
24 |
+
512
|
25 |
+
],
|
26 |
+
"conv_kernel": [
|
27 |
+
10,
|
28 |
+
3,
|
29 |
+
3,
|
30 |
+
3,
|
31 |
+
3,
|
32 |
+
2,
|
33 |
+
2
|
34 |
+
],
|
35 |
+
"conv_stride": [
|
36 |
+
5,
|
37 |
+
2,
|
38 |
+
2,
|
39 |
+
2,
|
40 |
+
2,
|
41 |
+
2,
|
42 |
+
2
|
43 |
+
],
|
44 |
+
"ctc_loss_reduction": "mean",
|
45 |
+
"ctc_zero_infinity": false,
|
46 |
+
"diversity_loss_weight": 0.1,
|
47 |
+
"do_stable_layer_norm": true,
|
48 |
+
"eos_token_id": 2,
|
49 |
+
"feat_extract_activation": "gelu",
|
50 |
+
"feat_extract_dropout": 0.0,
|
51 |
+
"feat_extract_norm": "layer",
|
52 |
+
"feat_proj_dropout": 0.0,
|
53 |
+
"feat_quantizer_dropout": 0.0,
|
54 |
+
"final_dropout": 0.0,
|
55 |
+
"hidden_act": "gelu",
|
56 |
+
"hidden_dropout": 0.0,
|
57 |
+
"hidden_size": 1024,
|
58 |
+
"initializer_range": 0.02,
|
59 |
+
"intermediate_size": 4096,
|
60 |
+
"layer_norm_eps": 1e-05,
|
61 |
+
"layerdrop": 0.0,
|
62 |
+
"mask_feature_length": 64,
|
63 |
+
"mask_feature_min_masks": 0,
|
64 |
+
"mask_feature_prob": 0.1,
|
65 |
+
"mask_time_length": 10,
|
66 |
+
"mask_time_min_masks": 2,
|
67 |
+
"mask_time_prob": 0.3,
|
68 |
+
"model_type": "wav2vec2",
|
69 |
+
"num_adapter_layers": 3,
|
70 |
+
"num_attention_heads": 16,
|
71 |
+
"num_codevector_groups": 2,
|
72 |
+
"num_codevectors_per_group": 320,
|
73 |
+
"num_conv_pos_embedding_groups": 16,
|
74 |
+
"num_conv_pos_embeddings": 128,
|
75 |
+
"num_feat_extract_layers": 7,
|
76 |
+
"num_hidden_layers": 24,
|
77 |
+
"num_negatives": 100,
|
78 |
+
"output_hidden_size": 1024,
|
79 |
+
"pad_token_id": 114,
|
80 |
+
"proj_codevector_dim": 768,
|
81 |
+
"tdnn_dilation": [
|
82 |
+
1,
|
83 |
+
2,
|
84 |
+
3,
|
85 |
+
1,
|
86 |
+
1
|
87 |
+
],
|
88 |
+
"tdnn_dim": [
|
89 |
+
512,
|
90 |
+
512,
|
91 |
+
512,
|
92 |
+
512,
|
93 |
+
1500
|
94 |
+
],
|
95 |
+
"tdnn_kernel": [
|
96 |
+
5,
|
97 |
+
3,
|
98 |
+
3,
|
99 |
+
1,
|
100 |
+
1
|
101 |
+
],
|
102 |
+
"torch_dtype": "float32",
|
103 |
+
"transformers_version": "4.26.0.dev0",
|
104 |
+
"use_weighted_layer_sum": false,
|
105 |
+
"vocab_size": 117,
|
106 |
+
"xvector_output_dim": 512
|
107 |
+
}
|
eval.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
python3 eval.py --model_id ./wav2vec2-xlsr-300m-pashto --dataset google/fleurs --config ps_af --split test
|
3 |
+
|
4 |
+
'''
|
5 |
+
#!/usr/bin/env python3
|
6 |
+
import argparse
|
7 |
+
import re
|
8 |
+
from typing import Dict
|
9 |
+
|
10 |
+
import torch
|
11 |
+
from datasets import Audio, Dataset, load_dataset, load_metric
|
12 |
+
|
13 |
+
from transformers import AutoFeatureExtractor, pipeline
|
14 |
+
|
15 |
+
|
16 |
+
def log_results(result: Dataset, args: Dict[str, str]):
|
17 |
+
"""DO NOT CHANGE. This function computes and logs the result metrics."""
|
18 |
+
|
19 |
+
log_outputs = args.log_outputs
|
20 |
+
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
|
21 |
+
|
22 |
+
# load metric
|
23 |
+
wer = load_metric("wer")
|
24 |
+
cer = load_metric("cer")
|
25 |
+
|
26 |
+
# compute metrics
|
27 |
+
wer_result = wer.compute(
|
28 |
+
references=result["target"], predictions=result["prediction"])
|
29 |
+
cer_result = cer.compute(
|
30 |
+
references=result["target"], predictions=result["prediction"])
|
31 |
+
|
32 |
+
# print & log results
|
33 |
+
result_str = f"WER: {wer_result}\nCER: {cer_result}"
|
34 |
+
print(result_str)
|
35 |
+
|
36 |
+
with open(f"{dataset_id}_eval_results.txt", "w") as f:
|
37 |
+
f.write(result_str)
|
38 |
+
|
39 |
+
# log all results in text file. Possibly interesting for analysis
|
40 |
+
if log_outputs is not None:
|
41 |
+
pred_file = f"log_{dataset_id}_predictions.txt"
|
42 |
+
target_file = f"log_{dataset_id}_targets.txt"
|
43 |
+
|
44 |
+
with open(pred_file, "w") as p, open(target_file, "w") as t:
|
45 |
+
|
46 |
+
# mapping function to write output
|
47 |
+
def write_to_file(batch, i):
|
48 |
+
p.write(f"{i}" + "\n")
|
49 |
+
p.write(batch["prediction"] + "\n")
|
50 |
+
t.write(f"{i}" + "\n")
|
51 |
+
t.write(batch["target"] + "\n")
|
52 |
+
|
53 |
+
result.map(write_to_file, with_indices=True)
|
54 |
+
|
55 |
+
|
56 |
+
def normalize_text(text: str) -> str:
|
57 |
+
"""DO ADAPT FOR YOUR USE CASE. this function normalizes the target text."""
|
58 |
+
|
59 |
+
chars_to_ignore_regex = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
|
60 |
+
|
61 |
+
text = re.sub(chars_to_ignore_regex, "", text.lower())
|
62 |
+
|
63 |
+
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
|
64 |
+
# note that order is important here!
|
65 |
+
token_sequences_to_ignore = ["\n\n", "\n", " ", " "]
|
66 |
+
|
67 |
+
for t in token_sequences_to_ignore:
|
68 |
+
text = " ".join(text.split(t))
|
69 |
+
|
70 |
+
return text
|
71 |
+
|
72 |
+
|
73 |
+
def main(args):
|
74 |
+
# load dataset
|
75 |
+
dataset = load_dataset(args.dataset, args.config,
|
76 |
+
split=args.split, use_auth_token=True)
|
77 |
+
|
78 |
+
# for testing: only process the first two examples as a test
|
79 |
+
# dataset = dataset.select(range(10))
|
80 |
+
|
81 |
+
# load processor
|
82 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
|
83 |
+
sampling_rate = feature_extractor.sampling_rate
|
84 |
+
|
85 |
+
# resample audio
|
86 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
|
87 |
+
|
88 |
+
# load eval pipeline
|
89 |
+
if args.device is None:
|
90 |
+
args.device = 0 if torch.cuda.is_available() else -1
|
91 |
+
asr = pipeline("automatic-speech-recognition",
|
92 |
+
model=args.model_id, device=args.device)
|
93 |
+
|
94 |
+
# map function to decode audio
|
95 |
+
def map_to_pred(batch):
|
96 |
+
prediction = asr(
|
97 |
+
batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s
|
98 |
+
)
|
99 |
+
|
100 |
+
batch["prediction"] = prediction["text"]
|
101 |
+
batch["target"] = normalize_text(batch["transcription"])
|
102 |
+
return batch
|
103 |
+
|
104 |
+
# run inference on all examples
|
105 |
+
result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
|
106 |
+
|
107 |
+
# compute and log_results
|
108 |
+
# do not change function below
|
109 |
+
log_results(result, args)
|
110 |
+
|
111 |
+
|
112 |
+
if __name__ == "__main__":
|
113 |
+
parser = argparse.ArgumentParser()
|
114 |
+
|
115 |
+
parser.add_argument(
|
116 |
+
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
|
117 |
+
)
|
118 |
+
parser.add_argument(
|
119 |
+
"--dataset",
|
120 |
+
type=str,
|
121 |
+
required=True,
|
122 |
+
help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
|
123 |
+
)
|
124 |
+
parser.add_argument(
|
125 |
+
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
|
126 |
+
)
|
127 |
+
parser.add_argument("--split", type=str, required=True,
|
128 |
+
help="Split of the dataset. *E.g.* `'test'`")
|
129 |
+
parser.add_argument(
|
130 |
+
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
|
131 |
+
)
|
132 |
+
parser.add_argument(
|
133 |
+
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second."
|
134 |
+
)
|
135 |
+
parser.add_argument(
|
136 |
+
"--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis."
|
137 |
+
)
|
138 |
+
parser.add_argument(
|
139 |
+
"--device",
|
140 |
+
type=int,
|
141 |
+
default=None,
|
142 |
+
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
|
143 |
+
)
|
144 |
+
args = parser.parse_args()
|
145 |
+
|
146 |
+
main(args)
|
eval_results.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 75.95,
|
3 |
+
"eval_cer": 0.1972293657199707,
|
4 |
+
"eval_loss": 0.9162325859069824,
|
5 |
+
"eval_runtime": 45.3436,
|
6 |
+
"eval_samples": 481,
|
7 |
+
"eval_samples_per_second": 10.608,
|
8 |
+
"eval_steps_per_second": 0.684,
|
9 |
+
"eval_wer": 0.5159447476125512
|
10 |
+
}
|
google_fleurs_ps_af_test_eval_results.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
WER: 0.5107077764277035
|
2 |
+
CER: 0.2001802222741381
|
log_google_fleurs_ps_af_test_predictions.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log_google_fleurs_ps_af_test_targets.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
preprocessor_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
4 |
+
"feature_size": 1,
|
5 |
+
"padding_side": "right",
|
6 |
+
"padding_value": 0,
|
7 |
+
"return_attention_mask": true,
|
8 |
+
"sampling_rate": 16000
|
9 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16d5bdabf704db530a89e8f651eaa5068007117858043a754242f0b36576ecc4
|
3 |
+
size 1262381549
|
run.sh
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
python run_speech_recognition_ctc.py \
|
2 |
+
--dataset_name="google/fleurs" \
|
3 |
+
--dataset_config_name="ps_af" \
|
4 |
+
--model_name_or_path="facebook/wav2vec2-xls-r-300m" \
|
5 |
+
--output_dir="./" \
|
6 |
+
--overwrite_output_dir \
|
7 |
+
--num_train_epochs="50" \
|
8 |
+
--per_device_train_batch_size="8" \
|
9 |
+
--per_device_eval_batch_size="8" \
|
10 |
+
--gradient_accumulation_steps="4" \
|
11 |
+
--learning_rate="7.5e-5" \
|
12 |
+
--warmup_steps="2000" \
|
13 |
+
--evaluation_strategy="steps" \
|
14 |
+
--text_column_name="transcription" \
|
15 |
+
--save_steps="500" \
|
16 |
+
--eval_steps="500" \
|
17 |
+
--logging_steps="10" \
|
18 |
+
--layerdrop="0.0" \
|
19 |
+
--activation_dropout="0.1" \
|
20 |
+
--eval_metrics wer cer \
|
21 |
+
--save_total_limit="1" \
|
22 |
+
--mask_time_prob="0.3" \
|
23 |
+
--mask_time_length="10" \
|
24 |
+
--mask_feature_prob="0.1" \
|
25 |
+
--fp16 \
|
26 |
+
--mask_feature_length="64" \
|
27 |
+
--chars_to_ignore , ? . ! - \; \: \" “ % ‘ ” � \
|
28 |
+
--group_by_length \
|
29 |
+
--push_to_hub \
|
30 |
+
--do_train --do_eval \
|
31 |
+
--gradient_checkpointing \
|
32 |
+
--use_auth_token
|
33 |
+
--freeze_feature_extractor="True"
|
run_2.sh
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
python run_speech_recognition_ctc.py \
|
2 |
+
--dataset_name="google/fleurs" \
|
3 |
+
--dataset_config_name="ps_af" \
|
4 |
+
--model_name_or_path="facebook/wav2vec2-xls-r-300m" \
|
5 |
+
--output_dir="./" \
|
6 |
+
--overwrite_output_dir="False" \
|
7 |
+
--max_steps="4500" \
|
8 |
+
--per_device_train_batch_size="8" \
|
9 |
+
--per_device_eval_batch_size="8" \
|
10 |
+
--gradient_accumulation_steps="4" \
|
11 |
+
--learning_rate="7.5e-5" \
|
12 |
+
--warmup_steps="2000" \
|
13 |
+
--evaluation_strategy="steps" \
|
14 |
+
--text_column_name="transcription" \
|
15 |
+
--save_steps="500" \
|
16 |
+
--eval_steps="500" \
|
17 |
+
--logging_steps="10" \
|
18 |
+
--layerdrop="0.0" \
|
19 |
+
--activation_dropout="0.1" \
|
20 |
+
--eval_metrics wer cer \
|
21 |
+
--greater_is_better="False" \
|
22 |
+
--load_best_model_at_end \
|
23 |
+
--save_total_limit="3" \
|
24 |
+
--mask_time_prob="0.3" \
|
25 |
+
--mask_time_length="10" \
|
26 |
+
--mask_feature_prob="0.1" \
|
27 |
+
--fp16 \
|
28 |
+
--mask_feature_length="64" \
|
29 |
+
--chars_to_ignore , ? . ! - \; \: \" “ % ‘ ” � \
|
30 |
+
--group_by_length \
|
31 |
+
--push_to_hub \
|
32 |
+
--do_train --do_eval \
|
33 |
+
--gradient_checkpointing \
|
34 |
+
--use_auth_token
|
35 |
+
--freeze_feature_extractor="True"
|
run_3.sh
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
python run_speech_recognition_ctc.py \
|
2 |
+
--dataset_name="google/fleurs" \
|
3 |
+
--dataset_config_name="ps_af" \
|
4 |
+
--model_name_or_path="facebook/wav2vec2-xls-r-300m" \
|
5 |
+
--output_dir="./" \
|
6 |
+
--overwrite_output_dir="False" \
|
7 |
+
--max_steps="6000" \
|
8 |
+
--per_device_train_batch_size="16" \
|
9 |
+
--per_device_eval_batch_size="16" \
|
10 |
+
--gradient_accumulation_steps="2" \
|
11 |
+
--learning_rate="7.5e-7" \
|
12 |
+
--warmup_steps="1000" \
|
13 |
+
--evaluation_strategy="steps" \
|
14 |
+
--text_column_name="transcription" \
|
15 |
+
--save_steps="500" \
|
16 |
+
--eval_steps="500" \
|
17 |
+
--logging_steps="10" \
|
18 |
+
--layerdrop="0.0" \
|
19 |
+
--activation_dropout="0.1" \
|
20 |
+
--eval_metrics wer cer \
|
21 |
+
--greater_is_better="False" \
|
22 |
+
--load_best_model_at_end \
|
23 |
+
--save_total_limit="10" \
|
24 |
+
--mask_time_prob="0.3" \
|
25 |
+
--mask_time_length="10" \
|
26 |
+
--mask_feature_prob="0.1" \
|
27 |
+
--fp16 \
|
28 |
+
--mask_feature_length="64" \
|
29 |
+
--chars_to_ignore , ? . ! - \; \: \" “ % ‘ ” � \
|
30 |
+
--group_by_length \
|
31 |
+
--push_to_hub \
|
32 |
+
--do_train --do_eval \
|
33 |
+
--gradient_checkpointing \
|
34 |
+
--use_auth_token
|
run_speech_recognition_ctc.py
ADDED
@@ -0,0 +1,772 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
|
16 |
+
""" Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition"""
|
17 |
+
|
18 |
+
import functools
|
19 |
+
import json
|
20 |
+
import logging
|
21 |
+
import os
|
22 |
+
import re
|
23 |
+
import sys
|
24 |
+
import warnings
|
25 |
+
from dataclasses import dataclass, field
|
26 |
+
from typing import Dict, List, Optional, Union
|
27 |
+
|
28 |
+
import datasets
|
29 |
+
import numpy as np
|
30 |
+
import torch
|
31 |
+
from datasets import DatasetDict, load_dataset
|
32 |
+
|
33 |
+
import evaluate
|
34 |
+
import transformers
|
35 |
+
from transformers import (
|
36 |
+
AutoConfig,
|
37 |
+
AutoFeatureExtractor,
|
38 |
+
AutoModelForCTC,
|
39 |
+
AutoProcessor,
|
40 |
+
AutoTokenizer,
|
41 |
+
HfArgumentParser,
|
42 |
+
Trainer,
|
43 |
+
TrainingArguments,
|
44 |
+
Wav2Vec2Processor,
|
45 |
+
set_seed,
|
46 |
+
)
|
47 |
+
from transformers.trainer_utils import get_last_checkpoint, is_main_process
|
48 |
+
from transformers.utils import check_min_version, send_example_telemetry
|
49 |
+
from transformers.utils.versions import require_version
|
50 |
+
|
51 |
+
|
52 |
+
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
53 |
+
check_min_version("4.26.0.dev0")
|
54 |
+
|
55 |
+
require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")
|
56 |
+
|
57 |
+
|
58 |
+
logger = logging.getLogger(__name__)
|
59 |
+
|
60 |
+
|
61 |
+
def list_field(default=None, metadata=None):
|
62 |
+
return field(default_factory=lambda: default, metadata=metadata)
|
63 |
+
|
64 |
+
|
65 |
+
@dataclass
|
66 |
+
class ModelArguments:
|
67 |
+
"""
|
68 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
69 |
+
"""
|
70 |
+
|
71 |
+
model_name_or_path: str = field(
|
72 |
+
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
73 |
+
)
|
74 |
+
tokenizer_name_or_path: Optional[str] = field(
|
75 |
+
default=None,
|
76 |
+
metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
|
77 |
+
)
|
78 |
+
cache_dir: Optional[str] = field(
|
79 |
+
default=None,
|
80 |
+
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
81 |
+
)
|
82 |
+
freeze_feature_encoder: bool = field(
|
83 |
+
default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
|
84 |
+
)
|
85 |
+
attention_dropout: float = field(
|
86 |
+
default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
|
87 |
+
)
|
88 |
+
activation_dropout: float = field(
|
89 |
+
default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
|
90 |
+
)
|
91 |
+
feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
|
92 |
+
hidden_dropout: float = field(
|
93 |
+
default=0.0,
|
94 |
+
metadata={
|
95 |
+
"help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
|
96 |
+
},
|
97 |
+
)
|
98 |
+
final_dropout: float = field(
|
99 |
+
default=0.0,
|
100 |
+
metadata={"help": "The dropout probability for the final projection layer."},
|
101 |
+
)
|
102 |
+
mask_time_prob: float = field(
|
103 |
+
default=0.05,
|
104 |
+
metadata={
|
105 |
+
"help": (
|
106 |
+
"Probability of each feature vector along the time axis to be chosen as the start of the vector"
|
107 |
+
"span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
|
108 |
+
"vectors will be masked along the time axis."
|
109 |
+
)
|
110 |
+
},
|
111 |
+
)
|
112 |
+
mask_time_length: int = field(
|
113 |
+
default=10,
|
114 |
+
metadata={"help": "Length of vector span to mask along the time axis."},
|
115 |
+
)
|
116 |
+
mask_feature_prob: float = field(
|
117 |
+
default=0.0,
|
118 |
+
metadata={
|
119 |
+
"help": (
|
120 |
+
"Probability of each feature vector along the feature axis to be chosen as the start of the vectorspan"
|
121 |
+
" to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature"
|
122 |
+
" bins will be masked along the time axis."
|
123 |
+
)
|
124 |
+
},
|
125 |
+
)
|
126 |
+
mask_feature_length: int = field(
|
127 |
+
default=10,
|
128 |
+
metadata={"help": "Length of vector span to mask along the feature axis."},
|
129 |
+
)
|
130 |
+
layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
|
131 |
+
ctc_loss_reduction: Optional[str] = field(
|
132 |
+
default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
|
133 |
+
)
|
134 |
+
|
135 |
+
|
136 |
+
@dataclass
|
137 |
+
class DataTrainingArguments:
|
138 |
+
"""
|
139 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
140 |
+
|
141 |
+
Using `HfArgumentParser` we can turn this class
|
142 |
+
into argparse arguments to be able to specify them on
|
143 |
+
the command line.
|
144 |
+
"""
|
145 |
+
|
146 |
+
dataset_name: str = field(
|
147 |
+
metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
148 |
+
)
|
149 |
+
dataset_config_name: str = field(
|
150 |
+
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
151 |
+
)
|
152 |
+
train_split_name: str = field(
|
153 |
+
default="train+validation",
|
154 |
+
metadata={
|
155 |
+
"help": (
|
156 |
+
"The name of the training data set split to use (via the datasets library). Defaults to "
|
157 |
+
"'train+validation'"
|
158 |
+
)
|
159 |
+
},
|
160 |
+
)
|
161 |
+
eval_split_name: str = field(
|
162 |
+
default="test",
|
163 |
+
metadata={
|
164 |
+
"help": "The name of the evaluation data set split to use (via the datasets library). Defaults to 'test'"
|
165 |
+
},
|
166 |
+
)
|
167 |
+
audio_column_name: str = field(
|
168 |
+
default="audio",
|
169 |
+
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
|
170 |
+
)
|
171 |
+
text_column_name: str = field(
|
172 |
+
default="text",
|
173 |
+
metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
|
174 |
+
)
|
175 |
+
overwrite_cache: bool = field(
|
176 |
+
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
|
177 |
+
)
|
178 |
+
preprocessing_num_workers: Optional[int] = field(
|
179 |
+
default=None,
|
180 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
181 |
+
)
|
182 |
+
max_train_samples: Optional[int] = field(
|
183 |
+
default=None,
|
184 |
+
metadata={
|
185 |
+
"help": (
|
186 |
+
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
187 |
+
"value if set."
|
188 |
+
)
|
189 |
+
},
|
190 |
+
)
|
191 |
+
max_eval_samples: Optional[int] = field(
|
192 |
+
default=None,
|
193 |
+
metadata={
|
194 |
+
"help": (
|
195 |
+
"For debugging purposes or quicker training, truncate the number of validation examples to this "
|
196 |
+
"value if set."
|
197 |
+
)
|
198 |
+
},
|
199 |
+
)
|
200 |
+
chars_to_ignore: Optional[List[str]] = list_field(
|
201 |
+
default=None,
|
202 |
+
metadata={"help": "A list of characters to remove from the transcripts."},
|
203 |
+
)
|
204 |
+
eval_metrics: List[str] = list_field(
|
205 |
+
default=["wer"],
|
206 |
+
metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
|
207 |
+
)
|
208 |
+
max_duration_in_seconds: float = field(
|
209 |
+
default=20.0,
|
210 |
+
metadata={
|
211 |
+
"help": (
|
212 |
+
"Filter audio files that are longer than `max_duration_in_seconds` seconds to"
|
213 |
+
" 'max_duration_in_seconds`"
|
214 |
+
)
|
215 |
+
},
|
216 |
+
)
|
217 |
+
min_duration_in_seconds: float = field(
|
218 |
+
default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
|
219 |
+
)
|
220 |
+
preprocessing_only: bool = field(
|
221 |
+
default=False,
|
222 |
+
metadata={
|
223 |
+
"help": (
|
224 |
+
"Whether to only do data preprocessing and skip training. This is especially useful when data"
|
225 |
+
" preprocessing errors out in distributed training due to timeout. In this case, one should run the"
|
226 |
+
" preprocessing in a non-distributed setup with `preprocessing_only=True` so that the cached datasets"
|
227 |
+
" can consequently be loaded in distributed training"
|
228 |
+
)
|
229 |
+
},
|
230 |
+
)
|
231 |
+
use_auth_token: bool = field(
|
232 |
+
default=False,
|
233 |
+
metadata={
|
234 |
+
"help": (
|
235 |
+
"If :obj:`True`, will use the token generated when running"
|
236 |
+
":obj:`huggingface-cli login` as HTTP bearer authorization for remote files."
|
237 |
+
)
|
238 |
+
},
|
239 |
+
)
|
240 |
+
unk_token: str = field(
|
241 |
+
default="[UNK]",
|
242 |
+
metadata={"help": "The unk token for the tokenizer"},
|
243 |
+
)
|
244 |
+
pad_token: str = field(
|
245 |
+
default="[PAD]",
|
246 |
+
metadata={"help": "The padding token for the tokenizer"},
|
247 |
+
)
|
248 |
+
word_delimiter_token: str = field(
|
249 |
+
default="|",
|
250 |
+
metadata={"help": "The word delimiter token for the tokenizer"},
|
251 |
+
)
|
252 |
+
phoneme_language: Optional[str] = field(
|
253 |
+
default=None,
|
254 |
+
metadata={
|
255 |
+
"help": (
|
256 |
+
"The target language that should be used be"
|
257 |
+
" passed to the tokenizer for tokenization. Note that"
|
258 |
+
" this is only relevant if the model classifies the"
|
259 |
+
" input audio to a sequence of phoneme sequences."
|
260 |
+
)
|
261 |
+
},
|
262 |
+
)
|
263 |
+
|
264 |
+
|
265 |
+
@dataclass
|
266 |
+
class DataCollatorCTCWithPadding:
|
267 |
+
"""
|
268 |
+
Data collator that will dynamically pad the inputs received.
|
269 |
+
Args:
|
270 |
+
processor (:class:`~transformers.AutoProcessor`)
|
271 |
+
The processor used for proccessing the data.
|
272 |
+
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
273 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
|
274 |
+
among:
|
275 |
+
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
276 |
+
sequence if provided).
|
277 |
+
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
278 |
+
maximum acceptable input length for the model if that argument is not provided.
|
279 |
+
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
280 |
+
different lengths).
|
281 |
+
max_length (:obj:`int`, `optional`):
|
282 |
+
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
|
283 |
+
max_length_labels (:obj:`int`, `optional`):
|
284 |
+
Maximum length of the ``labels`` returned list and optionally padding length (see above).
|
285 |
+
pad_to_multiple_of (:obj:`int`, `optional`):
|
286 |
+
If set will pad the sequence to a multiple of the provided value.
|
287 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
|
288 |
+
7.5 (Volta).
|
289 |
+
"""
|
290 |
+
|
291 |
+
processor: AutoProcessor
|
292 |
+
padding: Union[bool, str] = "longest"
|
293 |
+
pad_to_multiple_of: Optional[int] = None
|
294 |
+
pad_to_multiple_of_labels: Optional[int] = None
|
295 |
+
|
296 |
+
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
297 |
+
# split inputs and labels since they have to be of different lenghts and need
|
298 |
+
# different padding methods
|
299 |
+
input_features = [{"input_values": feature["input_values"]} for feature in features]
|
300 |
+
label_features = [{"input_ids": feature["labels"]} for feature in features]
|
301 |
+
|
302 |
+
batch = self.processor.pad(
|
303 |
+
input_features,
|
304 |
+
padding=self.padding,
|
305 |
+
pad_to_multiple_of=self.pad_to_multiple_of,
|
306 |
+
return_tensors="pt",
|
307 |
+
)
|
308 |
+
|
309 |
+
labels_batch = self.processor.pad(
|
310 |
+
labels=label_features,
|
311 |
+
padding=self.padding,
|
312 |
+
pad_to_multiple_of=self.pad_to_multiple_of_labels,
|
313 |
+
return_tensors="pt",
|
314 |
+
)
|
315 |
+
|
316 |
+
# replace padding with -100 to ignore loss correctly
|
317 |
+
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
|
318 |
+
|
319 |
+
batch["labels"] = labels
|
320 |
+
if "attention_mask" in batch:
|
321 |
+
batch["attention_mask"] = batch["attention_mask"].to(torch.long)
|
322 |
+
|
323 |
+
return batch
|
324 |
+
|
325 |
+
|
326 |
+
def create_vocabulary_from_data(
|
327 |
+
datasets: DatasetDict,
|
328 |
+
word_delimiter_token: Optional[str] = None,
|
329 |
+
unk_token: Optional[str] = None,
|
330 |
+
pad_token: Optional[str] = None,
|
331 |
+
):
|
332 |
+
# Given training and test labels create vocabulary
|
333 |
+
def extract_all_chars(batch):
|
334 |
+
all_text = " ".join(batch["target_text"])
|
335 |
+
vocab = list(set(all_text))
|
336 |
+
return {"vocab": [vocab], "all_text": [all_text]}
|
337 |
+
|
338 |
+
vocabs = datasets.map(
|
339 |
+
extract_all_chars,
|
340 |
+
batched=True,
|
341 |
+
batch_size=-1,
|
342 |
+
keep_in_memory=True,
|
343 |
+
remove_columns=datasets["train"].column_names,
|
344 |
+
)
|
345 |
+
|
346 |
+
# take union of all unique characters in each dataset
|
347 |
+
vocab_set = functools.reduce(
|
348 |
+
lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), vocabs.values()
|
349 |
+
)
|
350 |
+
|
351 |
+
vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
|
352 |
+
|
353 |
+
# replace white space with delimiter token
|
354 |
+
if word_delimiter_token is not None:
|
355 |
+
vocab_dict[word_delimiter_token] = vocab_dict[" "]
|
356 |
+
del vocab_dict[" "]
|
357 |
+
|
358 |
+
# add unk and pad token
|
359 |
+
if unk_token is not None:
|
360 |
+
vocab_dict[unk_token] = len(vocab_dict)
|
361 |
+
|
362 |
+
if pad_token is not None:
|
363 |
+
vocab_dict[pad_token] = len(vocab_dict)
|
364 |
+
|
365 |
+
return vocab_dict
|
366 |
+
|
367 |
+
|
368 |
+
def main():
|
369 |
+
# See all possible arguments in src/transformers/training_args.py
|
370 |
+
# or by passing the --help flag to this script.
|
371 |
+
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
372 |
+
|
373 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
374 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
375 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
376 |
+
# let's parse it to get our arguments.
|
377 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
378 |
+
else:
|
379 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
380 |
+
|
381 |
+
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
382 |
+
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
383 |
+
send_example_telemetry("run_speech_recognition_ctc", model_args, data_args)
|
384 |
+
|
385 |
+
# Detecting last checkpoint.
|
386 |
+
last_checkpoint = None
|
387 |
+
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
388 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
389 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
390 |
+
raise ValueError(
|
391 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
392 |
+
"Use --overwrite_output_dir to overcome."
|
393 |
+
)
|
394 |
+
elif last_checkpoint is not None:
|
395 |
+
logger.info(
|
396 |
+
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
397 |
+
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
398 |
+
)
|
399 |
+
|
400 |
+
# Setup logging
|
401 |
+
logging.basicConfig(
|
402 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
403 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
404 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
405 |
+
)
|
406 |
+
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
|
407 |
+
|
408 |
+
# Log on each process the small summary:
|
409 |
+
logger.warning(
|
410 |
+
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
411 |
+
f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
412 |
+
)
|
413 |
+
# Set the verbosity to info of the Transformers logger (on main process only):
|
414 |
+
if is_main_process(training_args.local_rank):
|
415 |
+
transformers.utils.logging.set_verbosity_info()
|
416 |
+
logger.info("Training/evaluation parameters %s", training_args)
|
417 |
+
|
418 |
+
# Set seed before initializing model.
|
419 |
+
set_seed(training_args.seed)
|
420 |
+
|
421 |
+
# 1. First, let's load the dataset
|
422 |
+
raw_datasets = DatasetDict()
|
423 |
+
|
424 |
+
if training_args.do_train:
|
425 |
+
raw_datasets["train"] = load_dataset(
|
426 |
+
data_args.dataset_name,
|
427 |
+
data_args.dataset_config_name,
|
428 |
+
split=data_args.train_split_name,
|
429 |
+
use_auth_token=data_args.use_auth_token,
|
430 |
+
)
|
431 |
+
|
432 |
+
if data_args.audio_column_name not in raw_datasets["train"].column_names:
|
433 |
+
raise ValueError(
|
434 |
+
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'."
|
435 |
+
" Make sure to set `--audio_column_name` to the correct audio column - one of"
|
436 |
+
f" {', '.join(raw_datasets['train'].column_names)}."
|
437 |
+
)
|
438 |
+
|
439 |
+
if data_args.text_column_name not in raw_datasets["train"].column_names:
|
440 |
+
raise ValueError(
|
441 |
+
f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
|
442 |
+
"Make sure to set `--text_column_name` to the correct text column - one of "
|
443 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
444 |
+
)
|
445 |
+
|
446 |
+
if data_args.max_train_samples is not None:
|
447 |
+
raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
|
448 |
+
|
449 |
+
if training_args.do_eval:
|
450 |
+
raw_datasets["eval"] = load_dataset(
|
451 |
+
data_args.dataset_name,
|
452 |
+
data_args.dataset_config_name,
|
453 |
+
split=data_args.eval_split_name,
|
454 |
+
use_auth_token=data_args.use_auth_token,
|
455 |
+
)
|
456 |
+
|
457 |
+
if data_args.max_eval_samples is not None:
|
458 |
+
raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
|
459 |
+
|
460 |
+
# 2. We remove some special characters from the datasets
|
461 |
+
# that make training complicated and do not help in transcribing the speech
|
462 |
+
# E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
|
463 |
+
# that could be easily picked up by the model
|
464 |
+
chars_to_ignore_regex = (
|
465 |
+
f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
|
466 |
+
)
|
467 |
+
text_column_name = data_args.text_column_name
|
468 |
+
|
469 |
+
def remove_special_characters(batch):
|
470 |
+
if chars_to_ignore_regex is not None:
|
471 |
+
batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[text_column_name]).lower() + " "
|
472 |
+
else:
|
473 |
+
batch["target_text"] = batch[text_column_name].lower() + " "
|
474 |
+
return batch
|
475 |
+
|
476 |
+
with training_args.main_process_first(desc="dataset map special characters removal"):
|
477 |
+
raw_datasets = raw_datasets.map(
|
478 |
+
remove_special_characters,
|
479 |
+
remove_columns=[text_column_name],
|
480 |
+
desc="remove special characters from datasets",
|
481 |
+
)
|
482 |
+
|
483 |
+
# save special tokens for tokenizer
|
484 |
+
word_delimiter_token = data_args.word_delimiter_token
|
485 |
+
unk_token = data_args.unk_token
|
486 |
+
pad_token = data_args.pad_token
|
487 |
+
|
488 |
+
# 3. Next, let's load the config as we might need it to create
|
489 |
+
# the tokenizer
|
490 |
+
# load config
|
491 |
+
config = AutoConfig.from_pretrained(
|
492 |
+
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
|
493 |
+
)
|
494 |
+
|
495 |
+
# 4. Next, if no tokenizer file is defined,
|
496 |
+
# we create the vocabulary of the model by extracting all unique characters from
|
497 |
+
# the training and evaluation datasets
|
498 |
+
# We need to make sure that only first rank saves vocabulary
|
499 |
+
# make sure all processes wait until vocab is created
|
500 |
+
tokenizer_name_or_path = model_args.tokenizer_name_or_path
|
501 |
+
tokenizer_kwargs = {}
|
502 |
+
if tokenizer_name_or_path is None:
|
503 |
+
# save vocab in training output dir
|
504 |
+
tokenizer_name_or_path = training_args.output_dir
|
505 |
+
|
506 |
+
vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
|
507 |
+
|
508 |
+
with training_args.main_process_first():
|
509 |
+
if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
|
510 |
+
try:
|
511 |
+
os.remove(vocab_file)
|
512 |
+
except OSError:
|
513 |
+
# in shared file-systems it might be the case that
|
514 |
+
# two processes try to delete the vocab file at the some time
|
515 |
+
pass
|
516 |
+
|
517 |
+
with training_args.main_process_first(desc="dataset map vocabulary creation"):
|
518 |
+
if not os.path.isfile(vocab_file):
|
519 |
+
os.makedirs(tokenizer_name_or_path, exist_ok=True)
|
520 |
+
vocab_dict = create_vocabulary_from_data(
|
521 |
+
raw_datasets,
|
522 |
+
word_delimiter_token=word_delimiter_token,
|
523 |
+
unk_token=unk_token,
|
524 |
+
pad_token=pad_token,
|
525 |
+
)
|
526 |
+
|
527 |
+
# save vocab dict to be loaded into tokenizer
|
528 |
+
with open(vocab_file, "w") as file:
|
529 |
+
json.dump(vocab_dict, file)
|
530 |
+
|
531 |
+
# if tokenizer has just been created
|
532 |
+
# it is defined by `tokenizer_class` if present in config else by `model_type`
|
533 |
+
tokenizer_kwargs = {
|
534 |
+
"config": config if config.tokenizer_class is not None else None,
|
535 |
+
"tokenizer_type": config.model_type if config.tokenizer_class is None else None,
|
536 |
+
"unk_token": unk_token,
|
537 |
+
"pad_token": pad_token,
|
538 |
+
"word_delimiter_token": word_delimiter_token,
|
539 |
+
}
|
540 |
+
|
541 |
+
# 5. Now we can instantiate the feature extractor, tokenizer and model
|
542 |
+
# Note for distributed training, the .from_pretrained methods guarantee that only
|
543 |
+
# one local process can concurrently download model & vocab.
|
544 |
+
|
545 |
+
# load feature_extractor and tokenizer
|
546 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
547 |
+
tokenizer_name_or_path,
|
548 |
+
use_auth_token=data_args.use_auth_token,
|
549 |
+
**tokenizer_kwargs,
|
550 |
+
)
|
551 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
552 |
+
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
|
553 |
+
)
|
554 |
+
|
555 |
+
# adapt config
|
556 |
+
config.update(
|
557 |
+
{
|
558 |
+
"feat_proj_dropout": model_args.feat_proj_dropout,
|
559 |
+
"attention_dropout": model_args.attention_dropout,
|
560 |
+
"hidden_dropout": model_args.hidden_dropout,
|
561 |
+
"final_dropout": model_args.final_dropout,
|
562 |
+
"mask_time_prob": model_args.mask_time_prob,
|
563 |
+
"mask_time_length": model_args.mask_time_length,
|
564 |
+
"mask_feature_prob": model_args.mask_feature_prob,
|
565 |
+
"mask_feature_length": model_args.mask_feature_length,
|
566 |
+
"gradient_checkpointing": training_args.gradient_checkpointing,
|
567 |
+
"layerdrop": model_args.layerdrop,
|
568 |
+
"ctc_loss_reduction": model_args.ctc_loss_reduction,
|
569 |
+
"pad_token_id": tokenizer.pad_token_id,
|
570 |
+
"vocab_size": len(tokenizer),
|
571 |
+
"activation_dropout": model_args.activation_dropout,
|
572 |
+
}
|
573 |
+
)
|
574 |
+
|
575 |
+
# create model
|
576 |
+
model = AutoModelForCTC.from_pretrained(
|
577 |
+
model_args.model_name_or_path,
|
578 |
+
cache_dir=model_args.cache_dir,
|
579 |
+
config=config,
|
580 |
+
use_auth_token=data_args.use_auth_token,
|
581 |
+
)
|
582 |
+
|
583 |
+
# freeze encoder
|
584 |
+
if model_args.freeze_feature_encoder:
|
585 |
+
model.freeze_feature_encoder()
|
586 |
+
|
587 |
+
# 6. Now we preprocess the datasets including loading the audio, resampling and normalization
|
588 |
+
# Thankfully, `datasets` takes care of automatically loading and resampling the audio,
|
589 |
+
# so that we just need to set the correct target sampling rate and normalize the input
|
590 |
+
# via the `feature_extractor`
|
591 |
+
|
592 |
+
# make sure that dataset decodes audio with correct sampling rate
|
593 |
+
dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
|
594 |
+
if dataset_sampling_rate != feature_extractor.sampling_rate:
|
595 |
+
raw_datasets = raw_datasets.cast_column(
|
596 |
+
data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
|
597 |
+
)
|
598 |
+
|
599 |
+
# derive max & min input length for sample rate & max duration
|
600 |
+
max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
|
601 |
+
min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
|
602 |
+
audio_column_name = data_args.audio_column_name
|
603 |
+
num_workers = data_args.preprocessing_num_workers
|
604 |
+
|
605 |
+
# `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
|
606 |
+
phoneme_language = data_args.phoneme_language
|
607 |
+
|
608 |
+
# Preprocessing the datasets.
|
609 |
+
# We need to read the audio files as arrays and tokenize the targets.
|
610 |
+
def prepare_dataset(batch):
|
611 |
+
# load audio
|
612 |
+
sample = batch[audio_column_name]
|
613 |
+
|
614 |
+
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
|
615 |
+
batch["input_values"] = inputs.input_values[0]
|
616 |
+
batch["input_length"] = len(batch["input_values"])
|
617 |
+
|
618 |
+
# encode targets
|
619 |
+
additional_kwargs = {}
|
620 |
+
if phoneme_language is not None:
|
621 |
+
additional_kwargs["phonemizer_lang"] = phoneme_language
|
622 |
+
|
623 |
+
batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
|
624 |
+
return batch
|
625 |
+
|
626 |
+
with training_args.main_process_first(desc="dataset map preprocessing"):
|
627 |
+
vectorized_datasets = raw_datasets.map(
|
628 |
+
prepare_dataset,
|
629 |
+
remove_columns=next(iter(raw_datasets.values())).column_names,
|
630 |
+
num_proc=num_workers,
|
631 |
+
desc="preprocess datasets",
|
632 |
+
)
|
633 |
+
|
634 |
+
def is_audio_in_length_range(length):
|
635 |
+
return length > min_input_length and length < max_input_length
|
636 |
+
|
637 |
+
# filter data that is shorter than min_input_length
|
638 |
+
vectorized_datasets = vectorized_datasets.filter(
|
639 |
+
is_audio_in_length_range,
|
640 |
+
num_proc=num_workers,
|
641 |
+
input_columns=["input_length"],
|
642 |
+
)
|
643 |
+
|
644 |
+
# 7. Next, we can prepare the training.
|
645 |
+
# Let's use word error rate (WER) as our evaluation metric,
|
646 |
+
# instantiate a data collator and the trainer
|
647 |
+
|
648 |
+
# Define evaluation metrics during training, *i.e.* word error rate, character error rate
|
649 |
+
eval_metrics = {metric: evaluate.load(metric) for metric in data_args.eval_metrics}
|
650 |
+
|
651 |
+
# for large datasets it is advised to run the preprocessing on a
|
652 |
+
# single machine first with ``args.preprocessing_only`` since there will mostly likely
|
653 |
+
# be a timeout when running the script in distributed mode.
|
654 |
+
# In a second step ``args.preprocessing_only`` can then be set to `False` to load the
|
655 |
+
# cached dataset
|
656 |
+
if data_args.preprocessing_only:
|
657 |
+
logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
|
658 |
+
return
|
659 |
+
|
660 |
+
def compute_metrics(pred):
|
661 |
+
pred_logits = pred.predictions
|
662 |
+
pred_ids = np.argmax(pred_logits, axis=-1)
|
663 |
+
|
664 |
+
pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
|
665 |
+
|
666 |
+
pred_str = tokenizer.batch_decode(pred_ids)
|
667 |
+
# we do not want to group tokens when computing the metrics
|
668 |
+
label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
|
669 |
+
|
670 |
+
metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()}
|
671 |
+
|
672 |
+
return metrics
|
673 |
+
|
674 |
+
# Now save everything to be able to create a single processor later
|
675 |
+
if is_main_process(training_args.local_rank):
|
676 |
+
# save feature extractor, tokenizer and config
|
677 |
+
feature_extractor.save_pretrained(training_args.output_dir)
|
678 |
+
tokenizer.save_pretrained(training_args.output_dir)
|
679 |
+
config.save_pretrained(training_args.output_dir)
|
680 |
+
|
681 |
+
try:
|
682 |
+
processor = AutoProcessor.from_pretrained(training_args.output_dir)
|
683 |
+
except (OSError, KeyError):
|
684 |
+
warnings.warn(
|
685 |
+
"Loading a processor from a feature extractor config that does not"
|
686 |
+
" include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
|
687 |
+
" attribute to your `preprocessor_config.json` file to suppress this warning: "
|
688 |
+
" `'processor_class': 'Wav2Vec2Processor'`",
|
689 |
+
FutureWarning,
|
690 |
+
)
|
691 |
+
processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
|
692 |
+
|
693 |
+
# Instantiate custom data collator
|
694 |
+
data_collator = DataCollatorCTCWithPadding(processor=processor)
|
695 |
+
|
696 |
+
# Initialize Trainer
|
697 |
+
trainer = Trainer(
|
698 |
+
model=model,
|
699 |
+
data_collator=data_collator,
|
700 |
+
args=training_args,
|
701 |
+
compute_metrics=compute_metrics,
|
702 |
+
train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
|
703 |
+
eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
|
704 |
+
tokenizer=feature_extractor,
|
705 |
+
)
|
706 |
+
|
707 |
+
# 8. Finally, we can start training
|
708 |
+
|
709 |
+
# Training
|
710 |
+
if training_args.do_train:
|
711 |
+
|
712 |
+
# use last checkpoint if exist
|
713 |
+
if last_checkpoint is not None:
|
714 |
+
checkpoint = last_checkpoint
|
715 |
+
elif os.path.isdir(model_args.model_name_or_path):
|
716 |
+
checkpoint = model_args.model_name_or_path
|
717 |
+
else:
|
718 |
+
checkpoint = None
|
719 |
+
|
720 |
+
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
721 |
+
trainer.save_model()
|
722 |
+
|
723 |
+
metrics = train_result.metrics
|
724 |
+
max_train_samples = (
|
725 |
+
data_args.max_train_samples
|
726 |
+
if data_args.max_train_samples is not None
|
727 |
+
else len(vectorized_datasets["train"])
|
728 |
+
)
|
729 |
+
metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
|
730 |
+
|
731 |
+
trainer.log_metrics("train", metrics)
|
732 |
+
trainer.save_metrics("train", metrics)
|
733 |
+
trainer.save_state()
|
734 |
+
|
735 |
+
# Evaluation
|
736 |
+
results = {}
|
737 |
+
if training_args.do_eval:
|
738 |
+
logger.info("*** Evaluate ***")
|
739 |
+
metrics = trainer.evaluate()
|
740 |
+
max_eval_samples = (
|
741 |
+
data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
|
742 |
+
)
|
743 |
+
metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
|
744 |
+
|
745 |
+
trainer.log_metrics("eval", metrics)
|
746 |
+
trainer.save_metrics("eval", metrics)
|
747 |
+
|
748 |
+
# Write model card and (optionally) push to hub
|
749 |
+
config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
|
750 |
+
kwargs = {
|
751 |
+
"finetuned_from": model_args.model_name_or_path,
|
752 |
+
"tasks": "automatic-speech-recognition",
|
753 |
+
"tags": ["automatic-speech-recognition", data_args.dataset_name],
|
754 |
+
"dataset_args": (
|
755 |
+
f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split:"
|
756 |
+
f" {data_args.eval_split_name}"
|
757 |
+
),
|
758 |
+
"dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
|
759 |
+
}
|
760 |
+
if "common_voice" in data_args.dataset_name:
|
761 |
+
kwargs["language"] = config_name
|
762 |
+
|
763 |
+
if training_args.push_to_hub:
|
764 |
+
trainer.push_to_hub(**kwargs)
|
765 |
+
else:
|
766 |
+
trainer.create_model_card(**kwargs)
|
767 |
+
|
768 |
+
return results
|
769 |
+
|
770 |
+
|
771 |
+
if __name__ == "__main__":
|
772 |
+
main()
|
runs/Dec14_13-29-56_129-213-22-31/1671025286.7583845/events.out.tfevents.1671025286.129-213-22-31.83694.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84fe7f9eb9bdee3f0ce972e8ae5cd67b151f661955efd2d0d8e279a1d976c2b6
|
3 |
+
size 5629
|
runs/Dec14_13-29-56_129-213-22-31/events.out.tfevents.1671025286.129-213-22-31.83694.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:868a191ddd017bc677b5d7108d90ae2c4e031d5cf34f17cf5c6cb23be7122dac
|
3 |
+
size 70052
|
runs/Dec14_13-29-56_129-213-22-31/events.out.tfevents.1671041124.129-213-22-31.83694.2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56ec8495be91f4bd3dbb31e66bba57037df719175e531b261efc1d005b8ec6bf
|
3 |
+
size 405
|
runs/Dec16_13-55-02_129-146-104-29/1671199202.2565184/events.out.tfevents.1671199202.129-146-104-29.128095.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:414238c9cc401aa54440b67cd9afd1482b1e3d03117800b010df72223777e4b6
|
3 |
+
size 5633
|
runs/Dec16_13-55-02_129-146-104-29/events.out.tfevents.1671199202.129-146-104-29.128095.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de34b04e2c5880b8861a0e14b0100a15eb8fd48621e0e131dc82e4fe1d0301a7
|
3 |
+
size 13738
|
runs/Dec16_13-55-02_129-146-104-29/events.out.tfevents.1671201437.129-146-104-29.128095.2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:08206f99f4f7b3fbfa384e19ec6ae571dfe46052f6556baacc5e7735d060a873
|
3 |
+
size 405
|
runs/Dec16_14-39-42_129-146-104-29/1671201754.79521/events.out.tfevents.1671201754.129-146-104-29.129288.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd49e0eafc8f61728599067cf82cdb4c8e2dfc804418f88a9bac0a108f945f5a
|
3 |
+
size 5633
|
runs/Dec16_14-39-42_129-146-104-29/events.out.tfevents.1671201754.129-146-104-29.129288.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:519a0f832341b452e5e021bcb75ae3c6153d9aa9caaa5a99261ad7d742e5e630
|
3 |
+
size 13738
|
runs/Dec16_14-39-42_129-146-104-29/events.out.tfevents.1671204006.129-146-104-29.129288.2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80d4d15418295c572aa4591c39561da14f6b9f84af7cb628829d3e04efcf370f
|
3 |
+
size 405
|
runs/Dec16_15-29-40_129-146-104-29/1671204751.2903225/events.out.tfevents.1671204751.129-146-104-29.131453.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c70656d64c1d71a68951d71fc889f492d33a57405e8d161c35d2cbb6085a13e4
|
3 |
+
size 5633
|
runs/Dec16_15-29-40_129-146-104-29/events.out.tfevents.1671204751.129-146-104-29.131453.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5dd4b02386c90cfc08d2d69cfaf6701c41bf670404378038bb0a43b850490b37
|
3 |
+
size 5642
|
runs/Dec16_15-39-46_129-146-104-29/1671205356.7546594/events.out.tfevents.1671205356.129-146-104-29.131763.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0275113dba0a656e712b957344ac77a8789fbfa165be78d96631e171b0746187
|
3 |
+
size 5633
|
runs/Dec16_15-39-46_129-146-104-29/events.out.tfevents.1671205356.129-146-104-29.131763.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a08d8d7c897ed3b076f8d828040d3477a13578a5a86f64356debf482e5da28d
|
3 |
+
size 13738
|
runs/Dec16_15-39-46_129-146-104-29/events.out.tfevents.1671207700.129-146-104-29.131763.2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f83a25a085a2175f629e030fb53b3c3b594db36c16ed1ac8ad53615b96a60088
|
3 |
+
size 405
|
runs/Dec16_20-12-50_129-146-104-29/1671221741.6851091/events.out.tfevents.1671221741.129-146-104-29.144289.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f8a651984c4fb45e3bc756b5f150fcfd878800854f2d3260816244f2d70ec758
|
3 |
+
size 5633
|
runs/Dec16_20-12-50_129-146-104-29/events.out.tfevents.1671221741.129-146-104-29.144289.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c94b3ebe03452e093f885924b88ff8bb7938aee4cf25e9deffade7b9711bb853
|
3 |
+
size 13738
|
runs/Dec16_20-12-50_129-146-104-29/events.out.tfevents.1671223965.129-146-104-29.144289.2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80e8f010a29167816de5acc6dfa4ebc9166999dc4d6436f409cabb8252b3b9dc
|
3 |
+
size 405
|
runs/Dec16_20-56-58_129-146-104-29/1671224389.6246047/events.out.tfevents.1671224389.129-146-104-29.146388.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61e148fd7677c43d22f7c5ef9aad820a1b1d94af7c61b0bd4e3bbb4160ca62cd
|
3 |
+
size 5633
|
runs/Dec16_20-56-58_129-146-104-29/events.out.tfevents.1671224389.129-146-104-29.146388.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:15a413eb22f0a56eddd96a1300a9c14d3c643429ce13383689d03bf93592f4df
|
3 |
+
size 6114
|
runs/Dec16_21-09-39_129-146-104-29/1671225152.348097/events.out.tfevents.1671225152.129-146-104-29.146624.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:312a6a0e0842bed6b7a490b5edd74a368578cf4383631f88c7e50d37d8a93214
|
3 |
+
size 5633
|
runs/Dec16_21-09-39_129-146-104-29/events.out.tfevents.1671225152.129-146-104-29.146624.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9f83beec22f9ef84db038caf7ebeecbf3750ce0e6139f7056f09119fed66b249
|
3 |
+
size 13741
|
runs/Dec16_21-09-39_129-146-104-29/events.out.tfevents.1671227491.129-146-104-29.146624.2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40319fc688859220e783165235dc6652e723535f892fdb147887467e472c1a18
|
3 |
+
size 405
|
special_tokens_map.json
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
{
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": true,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"content": "</s>",
|
12 |
+
"lstrip": false,
|
13 |
+
"normalized": true,
|
14 |
+
"rstrip": false,
|
15 |
+
"single_word": false
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"content": "<s>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": true,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"content": "</s>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": true,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"content": "<s>",
|
33 |
+
"lstrip": false,
|
34 |
+
"normalized": true,
|
35 |
+
"rstrip": false,
|
36 |
+
"single_word": false
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"content": "</s>",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": true,
|
42 |
+
"rstrip": false,
|
43 |
+
"single_word": false
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"content": "<s>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": true,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"content": "</s>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": true,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"content": "<s>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": true,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"content": "</s>",
|
68 |
+
"lstrip": false,
|
69 |
+
"normalized": true,
|
70 |
+
"rstrip": false,
|
71 |
+
"single_word": false
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"content": "<s>",
|
75 |
+
"lstrip": false,
|
76 |
+
"normalized": true,
|
77 |
+
"rstrip": false,
|
78 |
+
"single_word": false
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"content": "</s>",
|
82 |
+
"lstrip": false,
|
83 |
+
"normalized": true,
|
84 |
+
"rstrip": false,
|
85 |
+
"single_word": false
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"content": "<s>",
|
89 |
+
"lstrip": false,
|
90 |
+
"normalized": true,
|
91 |
+
"rstrip": false,
|
92 |
+
"single_word": false
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"content": "</s>",
|
96 |
+
"lstrip": false,
|
97 |
+
"normalized": true,
|
98 |
+
"rstrip": false,
|
99 |
+
"single_word": false
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"content": "<s>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": true,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"content": "</s>",
|
110 |
+
"lstrip": false,
|
111 |
+
"normalized": true,
|
112 |
+
"rstrip": false,
|
113 |
+
"single_word": false
|
114 |
+
}
|
115 |
+
],
|
116 |
+
"bos_token": "<s>",
|
117 |
+
"eos_token": "</s>",
|
118 |
+
"pad_token": "[PAD]",
|
119 |
+
"unk_token": "[UNK]"
|
120 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"do_lower_case": false,
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"model_max_length": 1000000000000000019884624838656,
|
6 |
+
"name_or_path": "./",
|
7 |
+
"pad_token": "[PAD]",
|
8 |
+
"replace_word_delimiter_char": " ",
|
9 |
+
"special_tokens_map_file": null,
|
10 |
+
"tokenizer_class": "Wav2Vec2CTCTokenizer",
|
11 |
+
"unk_token": "[UNK]",
|
12 |
+
"word_delimiter_token": "|"
|
13 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 75.95,
|
3 |
+
"train_loss": 0.044292491674423215,
|
4 |
+
"train_runtime": 2233.4842,
|
5 |
+
"train_samples": 2528,
|
6 |
+
"train_samples_per_second": 85.964,
|
7 |
+
"train_steps_per_second": 2.686
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,3745 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.9162458181381226,
|
3 |
+
"best_model_checkpoint": "./checkpoint-4000",
|
4 |
+
"epoch": 75.9493670886076,
|
5 |
+
"global_step": 6000,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.13,
|
12 |
+
"learning_rate": 3.7499999999999996e-07,
|
13 |
+
"loss": 23.4903,
|
14 |
+
"step": 10
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.25,
|
18 |
+
"learning_rate": 7.499999999999999e-07,
|
19 |
+
"loss": 21.1248,
|
20 |
+
"step": 20
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.38,
|
24 |
+
"learning_rate": 1.1249999999999998e-06,
|
25 |
+
"loss": 22.9317,
|
26 |
+
"step": 30
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.51,
|
30 |
+
"learning_rate": 1.4625e-06,
|
31 |
+
"loss": 20.6205,
|
32 |
+
"step": 40
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.63,
|
36 |
+
"learning_rate": 1.8375e-06,
|
37 |
+
"loss": 22.2659,
|
38 |
+
"step": 50
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.76,
|
42 |
+
"learning_rate": 2.2124999999999996e-06,
|
43 |
+
"loss": 21.4276,
|
44 |
+
"step": 60
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.89,
|
48 |
+
"learning_rate": 2.5875e-06,
|
49 |
+
"loss": 21.8665,
|
50 |
+
"step": 70
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 1.01,
|
54 |
+
"learning_rate": 2.9624999999999996e-06,
|
55 |
+
"loss": 20.8487,
|
56 |
+
"step": 80
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 1.14,
|
60 |
+
"learning_rate": 3.3374999999999994e-06,
|
61 |
+
"loss": 21.838,
|
62 |
+
"step": 90
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 1.27,
|
66 |
+
"learning_rate": 3.7125e-06,
|
67 |
+
"loss": 19.0875,
|
68 |
+
"step": 100
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 1.39,
|
72 |
+
"learning_rate": 4.087499999999999e-06,
|
73 |
+
"loss": 19.3293,
|
74 |
+
"step": 110
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 1.52,
|
78 |
+
"learning_rate": 4.462499999999999e-06,
|
79 |
+
"loss": 16.2192,
|
80 |
+
"step": 120
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 1.65,
|
84 |
+
"learning_rate": 4.8375e-06,
|
85 |
+
"loss": 15.0126,
|
86 |
+
"step": 130
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 1.77,
|
90 |
+
"learning_rate": 5.2125e-06,
|
91 |
+
"loss": 13.5756,
|
92 |
+
"step": 140
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 1.9,
|
96 |
+
"learning_rate": 5.5874999999999994e-06,
|
97 |
+
"loss": 12.5467,
|
98 |
+
"step": 150
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 2.03,
|
102 |
+
"learning_rate": 5.962499999999999e-06,
|
103 |
+
"loss": 11.8743,
|
104 |
+
"step": 160
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 2.15,
|
108 |
+
"learning_rate": 6.3375e-06,
|
109 |
+
"loss": 11.4262,
|
110 |
+
"step": 170
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 2.28,
|
114 |
+
"learning_rate": 6.712499999999999e-06,
|
115 |
+
"loss": 10.3319,
|
116 |
+
"step": 180
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 2.41,
|
120 |
+
"learning_rate": 7.0874999999999995e-06,
|
121 |
+
"loss": 10.0354,
|
122 |
+
"step": 190
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 2.53,
|
126 |
+
"learning_rate": 7.4625e-06,
|
127 |
+
"loss": 9.8568,
|
128 |
+
"step": 200
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 2.66,
|
132 |
+
"learning_rate": 7.837499999999999e-06,
|
133 |
+
"loss": 9.4804,
|
134 |
+
"step": 210
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 2.78,
|
138 |
+
"learning_rate": 8.2125e-06,
|
139 |
+
"loss": 9.0891,
|
140 |
+
"step": 220
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 2.91,
|
144 |
+
"learning_rate": 8.5875e-06,
|
145 |
+
"loss": 8.6768,
|
146 |
+
"step": 230
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 3.04,
|
150 |
+
"learning_rate": 8.9625e-06,
|
151 |
+
"loss": 8.5948,
|
152 |
+
"step": 240
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 3.16,
|
156 |
+
"learning_rate": 9.3375e-06,
|
157 |
+
"loss": 8.4701,
|
158 |
+
"step": 250
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 3.29,
|
162 |
+
"learning_rate": 9.712499999999999e-06,
|
163 |
+
"loss": 8.2693,
|
164 |
+
"step": 260
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 3.42,
|
168 |
+
"learning_rate": 1.00875e-05,
|
169 |
+
"loss": 8.0611,
|
170 |
+
"step": 270
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 3.54,
|
174 |
+
"learning_rate": 1.04625e-05,
|
175 |
+
"loss": 8.0222,
|
176 |
+
"step": 280
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 3.67,
|
180 |
+
"learning_rate": 1.0837499999999997e-05,
|
181 |
+
"loss": 7.5698,
|
182 |
+
"step": 290
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 3.8,
|
186 |
+
"learning_rate": 1.1212499999999998e-05,
|
187 |
+
"loss": 7.5901,
|
188 |
+
"step": 300
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 3.92,
|
192 |
+
"learning_rate": 1.1587499999999999e-05,
|
193 |
+
"loss": 7.2712,
|
194 |
+
"step": 310
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 4.05,
|
198 |
+
"learning_rate": 1.19625e-05,
|
199 |
+
"loss": 7.4485,
|
200 |
+
"step": 320
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 4.18,
|
204 |
+
"learning_rate": 1.23375e-05,
|
205 |
+
"loss": 7.1484,
|
206 |
+
"step": 330
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 4.3,
|
210 |
+
"learning_rate": 1.2712499999999999e-05,
|
211 |
+
"loss": 7.1105,
|
212 |
+
"step": 340
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 4.43,
|
216 |
+
"learning_rate": 1.3087499999999998e-05,
|
217 |
+
"loss": 6.8399,
|
218 |
+
"step": 350
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 4.56,
|
222 |
+
"learning_rate": 1.3462499999999999e-05,
|
223 |
+
"loss": 6.8718,
|
224 |
+
"step": 360
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 4.68,
|
228 |
+
"learning_rate": 1.38375e-05,
|
229 |
+
"loss": 6.5045,
|
230 |
+
"step": 370
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 4.81,
|
234 |
+
"learning_rate": 1.4212499999999998e-05,
|
235 |
+
"loss": 6.574,
|
236 |
+
"step": 380
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 4.94,
|
240 |
+
"learning_rate": 1.4587499999999999e-05,
|
241 |
+
"loss": 6.1716,
|
242 |
+
"step": 390
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 5.06,
|
246 |
+
"learning_rate": 1.49625e-05,
|
247 |
+
"loss": 6.3618,
|
248 |
+
"step": 400
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 5.19,
|
252 |
+
"learning_rate": 1.5337499999999997e-05,
|
253 |
+
"loss": 6.012,
|
254 |
+
"step": 410
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 5.32,
|
258 |
+
"learning_rate": 1.57125e-05,
|
259 |
+
"loss": 6.0979,
|
260 |
+
"step": 420
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 5.44,
|
264 |
+
"learning_rate": 1.6087499999999998e-05,
|
265 |
+
"loss": 5.7887,
|
266 |
+
"step": 430
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 5.57,
|
270 |
+
"learning_rate": 1.6462499999999997e-05,
|
271 |
+
"loss": 5.892,
|
272 |
+
"step": 440
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 5.7,
|
276 |
+
"learning_rate": 1.68375e-05,
|
277 |
+
"loss": 5.4672,
|
278 |
+
"step": 450
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 5.82,
|
282 |
+
"learning_rate": 1.7212499999999998e-05,
|
283 |
+
"loss": 5.6353,
|
284 |
+
"step": 460
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 5.95,
|
288 |
+
"learning_rate": 1.7587499999999997e-05,
|
289 |
+
"loss": 5.2754,
|
290 |
+
"step": 470
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 6.08,
|
294 |
+
"learning_rate": 1.7962499999999996e-05,
|
295 |
+
"loss": 5.3343,
|
296 |
+
"step": 480
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 6.2,
|
300 |
+
"learning_rate": 1.83375e-05,
|
301 |
+
"loss": 5.0586,
|
302 |
+
"step": 490
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"epoch": 6.33,
|
306 |
+
"learning_rate": 1.8712499999999997e-05,
|
307 |
+
"loss": 5.0767,
|
308 |
+
"step": 500
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 6.33,
|
312 |
+
"eval_cer": 1.0,
|
313 |
+
"eval_loss": 4.878269672393799,
|
314 |
+
"eval_runtime": 44.5452,
|
315 |
+
"eval_samples_per_second": 10.798,
|
316 |
+
"eval_steps_per_second": 1.369,
|
317 |
+
"eval_wer": 1.0,
|
318 |
+
"step": 500
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 6.46,
|
322 |
+
"learning_rate": 1.90875e-05,
|
323 |
+
"loss": 4.7637,
|
324 |
+
"step": 510
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 6.58,
|
328 |
+
"learning_rate": 1.94625e-05,
|
329 |
+
"loss": 4.8495,
|
330 |
+
"step": 520
|
331 |
+
},
|
332 |
+
{
|
333 |
+
"epoch": 6.71,
|
334 |
+
"learning_rate": 1.9837499999999998e-05,
|
335 |
+
"loss": 4.5651,
|
336 |
+
"step": 530
|
337 |
+
},
|
338 |
+
{
|
339 |
+
"epoch": 6.84,
|
340 |
+
"learning_rate": 2.02125e-05,
|
341 |
+
"loss": 4.7084,
|
342 |
+
"step": 540
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"epoch": 6.96,
|
346 |
+
"learning_rate": 2.05875e-05,
|
347 |
+
"loss": 4.3947,
|
348 |
+
"step": 550
|
349 |
+
},
|
350 |
+
{
|
351 |
+
"epoch": 7.09,
|
352 |
+
"learning_rate": 2.09625e-05,
|
353 |
+
"loss": 4.4641,
|
354 |
+
"step": 560
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 7.22,
|
358 |
+
"learning_rate": 2.1337499999999997e-05,
|
359 |
+
"loss": 4.2175,
|
360 |
+
"step": 570
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 7.34,
|
364 |
+
"learning_rate": 2.1712499999999996e-05,
|
365 |
+
"loss": 4.2767,
|
366 |
+
"step": 580
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 7.47,
|
370 |
+
"learning_rate": 2.2087499999999998e-05,
|
371 |
+
"loss": 4.0216,
|
372 |
+
"step": 590
|
373 |
+
},
|
374 |
+
{
|
375 |
+
"epoch": 7.59,
|
376 |
+
"learning_rate": 2.2462499999999997e-05,
|
377 |
+
"loss": 4.0459,
|
378 |
+
"step": 600
|
379 |
+
},
|
380 |
+
{
|
381 |
+
"epoch": 7.72,
|
382 |
+
"learning_rate": 2.2837499999999996e-05,
|
383 |
+
"loss": 3.8726,
|
384 |
+
"step": 610
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 7.85,
|
388 |
+
"learning_rate": 2.32125e-05,
|
389 |
+
"loss": 3.8982,
|
390 |
+
"step": 620
|
391 |
+
},
|
392 |
+
{
|
393 |
+
"epoch": 7.97,
|
394 |
+
"learning_rate": 2.3587499999999997e-05,
|
395 |
+
"loss": 3.7419,
|
396 |
+
"step": 630
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"epoch": 8.1,
|
400 |
+
"learning_rate": 2.39625e-05,
|
401 |
+
"loss": 3.7623,
|
402 |
+
"step": 640
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 8.23,
|
406 |
+
"learning_rate": 2.43375e-05,
|
407 |
+
"loss": 3.6173,
|
408 |
+
"step": 650
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 8.35,
|
412 |
+
"learning_rate": 2.4712499999999998e-05,
|
413 |
+
"loss": 3.625,
|
414 |
+
"step": 660
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 8.48,
|
418 |
+
"learning_rate": 2.50875e-05,
|
419 |
+
"loss": 3.4981,
|
420 |
+
"step": 670
|
421 |
+
},
|
422 |
+
{
|
423 |
+
"epoch": 8.61,
|
424 |
+
"learning_rate": 2.54625e-05,
|
425 |
+
"loss": 3.5114,
|
426 |
+
"step": 680
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"epoch": 8.73,
|
430 |
+
"learning_rate": 2.5837499999999994e-05,
|
431 |
+
"loss": 3.42,
|
432 |
+
"step": 690
|
433 |
+
},
|
434 |
+
{
|
435 |
+
"epoch": 8.86,
|
436 |
+
"learning_rate": 2.6212499999999997e-05,
|
437 |
+
"loss": 3.4173,
|
438 |
+
"step": 700
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"epoch": 8.99,
|
442 |
+
"learning_rate": 2.6587499999999996e-05,
|
443 |
+
"loss": 3.3501,
|
444 |
+
"step": 710
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 9.11,
|
448 |
+
"learning_rate": 2.6962499999999998e-05,
|
449 |
+
"loss": 3.3289,
|
450 |
+
"step": 720
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 9.24,
|
454 |
+
"learning_rate": 2.7337499999999997e-05,
|
455 |
+
"loss": 3.2786,
|
456 |
+
"step": 730
|
457 |
+
},
|
458 |
+
{
|
459 |
+
"epoch": 9.37,
|
460 |
+
"learning_rate": 2.7712499999999996e-05,
|
461 |
+
"loss": 3.2836,
|
462 |
+
"step": 740
|
463 |
+
},
|
464 |
+
{
|
465 |
+
"epoch": 9.49,
|
466 |
+
"learning_rate": 2.80875e-05,
|
467 |
+
"loss": 3.2514,
|
468 |
+
"step": 750
|
469 |
+
},
|
470 |
+
{
|
471 |
+
"epoch": 9.62,
|
472 |
+
"learning_rate": 2.8462499999999997e-05,
|
473 |
+
"loss": 3.2778,
|
474 |
+
"step": 760
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 9.75,
|
478 |
+
"learning_rate": 2.88375e-05,
|
479 |
+
"loss": 3.2042,
|
480 |
+
"step": 770
|
481 |
+
},
|
482 |
+
{
|
483 |
+
"epoch": 9.87,
|
484 |
+
"learning_rate": 2.92125e-05,
|
485 |
+
"loss": 3.1964,
|
486 |
+
"step": 780
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"epoch": 10.0,
|
490 |
+
"learning_rate": 2.9587499999999998e-05,
|
491 |
+
"loss": 3.2052,
|
492 |
+
"step": 790
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 10.13,
|
496 |
+
"learning_rate": 2.99625e-05,
|
497 |
+
"loss": 3.1989,
|
498 |
+
"step": 800
|
499 |
+
},
|
500 |
+
{
|
501 |
+
"epoch": 10.25,
|
502 |
+
"learning_rate": 3.03375e-05,
|
503 |
+
"loss": 3.1823,
|
504 |
+
"step": 810
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 10.38,
|
508 |
+
"learning_rate": 3.0712499999999994e-05,
|
509 |
+
"loss": 3.1613,
|
510 |
+
"step": 820
|
511 |
+
},
|
512 |
+
{
|
513 |
+
"epoch": 10.51,
|
514 |
+
"learning_rate": 3.10875e-05,
|
515 |
+
"loss": 3.1659,
|
516 |
+
"step": 830
|
517 |
+
},
|
518 |
+
{
|
519 |
+
"epoch": 10.63,
|
520 |
+
"learning_rate": 3.14625e-05,
|
521 |
+
"loss": 3.1798,
|
522 |
+
"step": 840
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"epoch": 10.76,
|
526 |
+
"learning_rate": 3.1837499999999995e-05,
|
527 |
+
"loss": 3.1711,
|
528 |
+
"step": 850
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"epoch": 10.89,
|
532 |
+
"learning_rate": 3.22125e-05,
|
533 |
+
"loss": 3.1659,
|
534 |
+
"step": 860
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 11.01,
|
538 |
+
"learning_rate": 3.25875e-05,
|
539 |
+
"loss": 3.1309,
|
540 |
+
"step": 870
|
541 |
+
},
|
542 |
+
{
|
543 |
+
"epoch": 11.14,
|
544 |
+
"learning_rate": 3.2962499999999995e-05,
|
545 |
+
"loss": 3.1706,
|
546 |
+
"step": 880
|
547 |
+
},
|
548 |
+
{
|
549 |
+
"epoch": 11.27,
|
550 |
+
"learning_rate": 3.33375e-05,
|
551 |
+
"loss": 3.1441,
|
552 |
+
"step": 890
|
553 |
+
},
|
554 |
+
{
|
555 |
+
"epoch": 11.39,
|
556 |
+
"learning_rate": 3.37125e-05,
|
557 |
+
"loss": 3.1341,
|
558 |
+
"step": 900
|
559 |
+
},
|
560 |
+
{
|
561 |
+
"epoch": 11.52,
|
562 |
+
"learning_rate": 3.4087499999999995e-05,
|
563 |
+
"loss": 3.1594,
|
564 |
+
"step": 910
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 11.65,
|
568 |
+
"learning_rate": 3.44625e-05,
|
569 |
+
"loss": 3.1262,
|
570 |
+
"step": 920
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 11.77,
|
574 |
+
"learning_rate": 3.48375e-05,
|
575 |
+
"loss": 3.1541,
|
576 |
+
"step": 930
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 11.9,
|
580 |
+
"learning_rate": 3.5212499999999995e-05,
|
581 |
+
"loss": 3.1393,
|
582 |
+
"step": 940
|
583 |
+
},
|
584 |
+
{
|
585 |
+
"epoch": 12.03,
|
586 |
+
"learning_rate": 3.55875e-05,
|
587 |
+
"loss": 3.1398,
|
588 |
+
"step": 950
|
589 |
+
},
|
590 |
+
{
|
591 |
+
"epoch": 12.15,
|
592 |
+
"learning_rate": 3.596249999999999e-05,
|
593 |
+
"loss": 3.1551,
|
594 |
+
"step": 960
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 12.28,
|
598 |
+
"learning_rate": 3.6337499999999996e-05,
|
599 |
+
"loss": 3.1391,
|
600 |
+
"step": 970
|
601 |
+
},
|
602 |
+
{
|
603 |
+
"epoch": 12.41,
|
604 |
+
"learning_rate": 3.67125e-05,
|
605 |
+
"loss": 3.1236,
|
606 |
+
"step": 980
|
607 |
+
},
|
608 |
+
{
|
609 |
+
"epoch": 12.53,
|
610 |
+
"learning_rate": 3.7087499999999993e-05,
|
611 |
+
"loss": 3.1327,
|
612 |
+
"step": 990
|
613 |
+
},
|
614 |
+
{
|
615 |
+
"epoch": 12.66,
|
616 |
+
"learning_rate": 3.7462499999999996e-05,
|
617 |
+
"loss": 3.1156,
|
618 |
+
"step": 1000
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 12.66,
|
622 |
+
"eval_cer": 1.0,
|
623 |
+
"eval_loss": 3.0990264415740967,
|
624 |
+
"eval_runtime": 44.9243,
|
625 |
+
"eval_samples_per_second": 10.707,
|
626 |
+
"eval_steps_per_second": 1.358,
|
627 |
+
"eval_wer": 1.0,
|
628 |
+
"step": 1000
|
629 |
+
},
|
630 |
+
{
|
631 |
+
"epoch": 12.78,
|
632 |
+
"learning_rate": 3.783749999999999e-05,
|
633 |
+
"loss": 3.1365,
|
634 |
+
"step": 1010
|
635 |
+
},
|
636 |
+
{
|
637 |
+
"epoch": 12.91,
|
638 |
+
"learning_rate": 3.8212499999999994e-05,
|
639 |
+
"loss": 3.1123,
|
640 |
+
"step": 1020
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"epoch": 13.04,
|
644 |
+
"learning_rate": 3.8587499999999996e-05,
|
645 |
+
"loss": 3.132,
|
646 |
+
"step": 1030
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 13.16,
|
650 |
+
"learning_rate": 3.896249999999999e-05,
|
651 |
+
"loss": 3.1218,
|
652 |
+
"step": 1040
|
653 |
+
},
|
654 |
+
{
|
655 |
+
"epoch": 13.29,
|
656 |
+
"learning_rate": 3.9337499999999994e-05,
|
657 |
+
"loss": 3.1266,
|
658 |
+
"step": 1050
|
659 |
+
},
|
660 |
+
{
|
661 |
+
"epoch": 13.42,
|
662 |
+
"learning_rate": 3.9712499999999996e-05,
|
663 |
+
"loss": 3.1247,
|
664 |
+
"step": 1060
|
665 |
+
},
|
666 |
+
{
|
667 |
+
"epoch": 13.54,
|
668 |
+
"learning_rate": 4.008749999999999e-05,
|
669 |
+
"loss": 3.1203,
|
670 |
+
"step": 1070
|
671 |
+
},
|
672 |
+
{
|
673 |
+
"epoch": 13.67,
|
674 |
+
"learning_rate": 4.0462499999999994e-05,
|
675 |
+
"loss": 3.1071,
|
676 |
+
"step": 1080
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 13.8,
|
680 |
+
"learning_rate": 4.0837499999999997e-05,
|
681 |
+
"loss": 3.1095,
|
682 |
+
"step": 1090
|
683 |
+
},
|
684 |
+
{
|
685 |
+
"epoch": 13.92,
|
686 |
+
"learning_rate": 4.12125e-05,
|
687 |
+
"loss": 3.0724,
|
688 |
+
"step": 1100
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 14.05,
|
692 |
+
"learning_rate": 4.1587499999999994e-05,
|
693 |
+
"loss": 3.1,
|
694 |
+
"step": 1110
|
695 |
+
},
|
696 |
+
{
|
697 |
+
"epoch": 14.18,
|
698 |
+
"learning_rate": 4.19625e-05,
|
699 |
+
"loss": 3.0862,
|
700 |
+
"step": 1120
|
701 |
+
},
|
702 |
+
{
|
703 |
+
"epoch": 14.3,
|
704 |
+
"learning_rate": 4.23375e-05,
|
705 |
+
"loss": 3.1141,
|
706 |
+
"step": 1130
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 14.43,
|
710 |
+
"learning_rate": 4.2712499999999995e-05,
|
711 |
+
"loss": 3.0847,
|
712 |
+
"step": 1140
|
713 |
+
},
|
714 |
+
{
|
715 |
+
"epoch": 14.56,
|
716 |
+
"learning_rate": 4.30875e-05,
|
717 |
+
"loss": 3.0845,
|
718 |
+
"step": 1150
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"epoch": 14.68,
|
722 |
+
"learning_rate": 4.34625e-05,
|
723 |
+
"loss": 3.0537,
|
724 |
+
"step": 1160
|
725 |
+
},
|
726 |
+
{
|
727 |
+
"epoch": 14.81,
|
728 |
+
"learning_rate": 4.3837499999999995e-05,
|
729 |
+
"loss": 3.0811,
|
730 |
+
"step": 1170
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 14.94,
|
734 |
+
"learning_rate": 4.42125e-05,
|
735 |
+
"loss": 3.031,
|
736 |
+
"step": 1180
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 15.06,
|
740 |
+
"learning_rate": 4.45875e-05,
|
741 |
+
"loss": 3.0431,
|
742 |
+
"step": 1190
|
743 |
+
},
|
744 |
+
{
|
745 |
+
"epoch": 15.19,
|
746 |
+
"learning_rate": 4.4962499999999995e-05,
|
747 |
+
"loss": 2.9891,
|
748 |
+
"step": 1200
|
749 |
+
},
|
750 |
+
{
|
751 |
+
"epoch": 15.32,
|
752 |
+
"learning_rate": 4.53375e-05,
|
753 |
+
"loss": 2.9511,
|
754 |
+
"step": 1210
|
755 |
+
},
|
756 |
+
{
|
757 |
+
"epoch": 15.44,
|
758 |
+
"learning_rate": 4.57125e-05,
|
759 |
+
"loss": 2.8874,
|
760 |
+
"step": 1220
|
761 |
+
},
|
762 |
+
{
|
763 |
+
"epoch": 15.57,
|
764 |
+
"learning_rate": 4.60875e-05,
|
765 |
+
"loss": 2.8216,
|
766 |
+
"step": 1230
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 15.7,
|
770 |
+
"learning_rate": 4.64625e-05,
|
771 |
+
"loss": 2.7211,
|
772 |
+
"step": 1240
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 15.82,
|
776 |
+
"learning_rate": 4.68375e-05,
|
777 |
+
"loss": 2.6755,
|
778 |
+
"step": 1250
|
779 |
+
},
|
780 |
+
{
|
781 |
+
"epoch": 15.95,
|
782 |
+
"learning_rate": 4.721249999999999e-05,
|
783 |
+
"loss": 2.5301,
|
784 |
+
"step": 1260
|
785 |
+
},
|
786 |
+
{
|
787 |
+
"epoch": 16.08,
|
788 |
+
"learning_rate": 4.758749999999999e-05,
|
789 |
+
"loss": 2.4484,
|
790 |
+
"step": 1270
|
791 |
+
},
|
792 |
+
{
|
793 |
+
"epoch": 16.2,
|
794 |
+
"learning_rate": 4.7962499999999994e-05,
|
795 |
+
"loss": 2.2522,
|
796 |
+
"step": 1280
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 16.33,
|
800 |
+
"learning_rate": 4.8337499999999996e-05,
|
801 |
+
"loss": 2.1895,
|
802 |
+
"step": 1290
|
803 |
+
},
|
804 |
+
{
|
805 |
+
"epoch": 16.46,
|
806 |
+
"learning_rate": 4.871249999999999e-05,
|
807 |
+
"loss": 2.0274,
|
808 |
+
"step": 1300
|
809 |
+
},
|
810 |
+
{
|
811 |
+
"epoch": 16.58,
|
812 |
+
"learning_rate": 4.9087499999999994e-05,
|
813 |
+
"loss": 1.9528,
|
814 |
+
"step": 1310
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 16.71,
|
818 |
+
"learning_rate": 4.9462499999999996e-05,
|
819 |
+
"loss": 1.8849,
|
820 |
+
"step": 1320
|
821 |
+
},
|
822 |
+
{
|
823 |
+
"epoch": 16.84,
|
824 |
+
"learning_rate": 4.983749999999999e-05,
|
825 |
+
"loss": 1.8432,
|
826 |
+
"step": 1330
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 16.96,
|
830 |
+
"learning_rate": 5.0212499999999994e-05,
|
831 |
+
"loss": 1.7181,
|
832 |
+
"step": 1340
|
833 |
+
},
|
834 |
+
{
|
835 |
+
"epoch": 17.09,
|
836 |
+
"learning_rate": 5.0587499999999996e-05,
|
837 |
+
"loss": 1.7099,
|
838 |
+
"step": 1350
|
839 |
+
},
|
840 |
+
{
|
841 |
+
"epoch": 17.22,
|
842 |
+
"learning_rate": 5.096249999999999e-05,
|
843 |
+
"loss": 1.6276,
|
844 |
+
"step": 1360
|
845 |
+
},
|
846 |
+
{
|
847 |
+
"epoch": 17.34,
|
848 |
+
"learning_rate": 5.1337499999999994e-05,
|
849 |
+
"loss": 1.6456,
|
850 |
+
"step": 1370
|
851 |
+
},
|
852 |
+
{
|
853 |
+
"epoch": 17.47,
|
854 |
+
"learning_rate": 5.1712499999999997e-05,
|
855 |
+
"loss": 1.5613,
|
856 |
+
"step": 1380
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 17.59,
|
860 |
+
"learning_rate": 5.20875e-05,
|
861 |
+
"loss": 1.5553,
|
862 |
+
"step": 1390
|
863 |
+
},
|
864 |
+
{
|
865 |
+
"epoch": 17.72,
|
866 |
+
"learning_rate": 5.2462499999999994e-05,
|
867 |
+
"loss": 1.4874,
|
868 |
+
"step": 1400
|
869 |
+
},
|
870 |
+
{
|
871 |
+
"epoch": 17.85,
|
872 |
+
"learning_rate": 5.28375e-05,
|
873 |
+
"loss": 1.5079,
|
874 |
+
"step": 1410
|
875 |
+
},
|
876 |
+
{
|
877 |
+
"epoch": 17.97,
|
878 |
+
"learning_rate": 5.32125e-05,
|
879 |
+
"loss": 1.4935,
|
880 |
+
"step": 1420
|
881 |
+
},
|
882 |
+
{
|
883 |
+
"epoch": 18.1,
|
884 |
+
"learning_rate": 5.3587499999999995e-05,
|
885 |
+
"loss": 1.4843,
|
886 |
+
"step": 1430
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"epoch": 18.23,
|
890 |
+
"learning_rate": 5.39625e-05,
|
891 |
+
"loss": 1.416,
|
892 |
+
"step": 1440
|
893 |
+
},
|
894 |
+
{
|
895 |
+
"epoch": 18.35,
|
896 |
+
"learning_rate": 5.43375e-05,
|
897 |
+
"loss": 1.3815,
|
898 |
+
"step": 1450
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 18.48,
|
902 |
+
"learning_rate": 5.4712499999999995e-05,
|
903 |
+
"loss": 1.4005,
|
904 |
+
"step": 1460
|
905 |
+
},
|
906 |
+
{
|
907 |
+
"epoch": 18.61,
|
908 |
+
"learning_rate": 5.50875e-05,
|
909 |
+
"loss": 1.3824,
|
910 |
+
"step": 1470
|
911 |
+
},
|
912 |
+
{
|
913 |
+
"epoch": 18.73,
|
914 |
+
"learning_rate": 5.54625e-05,
|
915 |
+
"loss": 1.3038,
|
916 |
+
"step": 1480
|
917 |
+
},
|
918 |
+
{
|
919 |
+
"epoch": 18.86,
|
920 |
+
"learning_rate": 5.58375e-05,
|
921 |
+
"loss": 1.4168,
|
922 |
+
"step": 1490
|
923 |
+
},
|
924 |
+
{
|
925 |
+
"epoch": 18.99,
|
926 |
+
"learning_rate": 5.62125e-05,
|
927 |
+
"loss": 1.3506,
|
928 |
+
"step": 1500
|
929 |
+
},
|
930 |
+
{
|
931 |
+
"epoch": 18.99,
|
932 |
+
"eval_cer": 0.28892684849736266,
|
933 |
+
"eval_loss": 1.1056294441223145,
|
934 |
+
"eval_runtime": 44.5929,
|
935 |
+
"eval_samples_per_second": 10.786,
|
936 |
+
"eval_steps_per_second": 1.368,
|
937 |
+
"eval_wer": 0.7031036834924966,
|
938 |
+
"step": 1500
|
939 |
+
},
|
940 |
+
{
|
941 |
+
"epoch": 19.11,
|
942 |
+
"learning_rate": 5.658749999999999e-05,
|
943 |
+
"loss": 1.3407,
|
944 |
+
"step": 1510
|
945 |
+
},
|
946 |
+
{
|
947 |
+
"epoch": 19.24,
|
948 |
+
"learning_rate": 5.696249999999999e-05,
|
949 |
+
"loss": 1.2849,
|
950 |
+
"step": 1520
|
951 |
+
},
|
952 |
+
{
|
953 |
+
"epoch": 19.37,
|
954 |
+
"learning_rate": 5.733749999999999e-05,
|
955 |
+
"loss": 1.3141,
|
956 |
+
"step": 1530
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"epoch": 19.49,
|
960 |
+
"learning_rate": 5.771249999999999e-05,
|
961 |
+
"loss": 1.2858,
|
962 |
+
"step": 1540
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 19.62,
|
966 |
+
"learning_rate": 5.8087499999999996e-05,
|
967 |
+
"loss": 1.2842,
|
968 |
+
"step": 1550
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 19.75,
|
972 |
+
"learning_rate": 5.846249999999999e-05,
|
973 |
+
"loss": 1.2537,
|
974 |
+
"step": 1560
|
975 |
+
},
|
976 |
+
{
|
977 |
+
"epoch": 19.87,
|
978 |
+
"learning_rate": 5.8837499999999994e-05,
|
979 |
+
"loss": 1.304,
|
980 |
+
"step": 1570
|
981 |
+
},
|
982 |
+
{
|
983 |
+
"epoch": 20.0,
|
984 |
+
"learning_rate": 5.9212499999999996e-05,
|
985 |
+
"loss": 1.243,
|
986 |
+
"step": 1580
|
987 |
+
},
|
988 |
+
{
|
989 |
+
"epoch": 20.13,
|
990 |
+
"learning_rate": 5.958749999999999e-05,
|
991 |
+
"loss": 1.2636,
|
992 |
+
"step": 1590
|
993 |
+
},
|
994 |
+
{
|
995 |
+
"epoch": 20.25,
|
996 |
+
"learning_rate": 5.9962499999999994e-05,
|
997 |
+
"loss": 1.2239,
|
998 |
+
"step": 1600
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"epoch": 20.38,
|
1002 |
+
"learning_rate": 6.0337499999999996e-05,
|
1003 |
+
"loss": 1.267,
|
1004 |
+
"step": 1610
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 20.51,
|
1008 |
+
"learning_rate": 6.071249999999999e-05,
|
1009 |
+
"loss": 1.216,
|
1010 |
+
"step": 1620
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 20.63,
|
1014 |
+
"learning_rate": 6.10875e-05,
|
1015 |
+
"loss": 1.253,
|
1016 |
+
"step": 1630
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"epoch": 20.76,
|
1020 |
+
"learning_rate": 6.14625e-05,
|
1021 |
+
"loss": 1.2137,
|
1022 |
+
"step": 1640
|
1023 |
+
},
|
1024 |
+
{
|
1025 |
+
"epoch": 20.89,
|
1026 |
+
"learning_rate": 6.183749999999999e-05,
|
1027 |
+
"loss": 1.1845,
|
1028 |
+
"step": 1650
|
1029 |
+
},
|
1030 |
+
{
|
1031 |
+
"epoch": 21.01,
|
1032 |
+
"learning_rate": 6.22125e-05,
|
1033 |
+
"loss": 1.1501,
|
1034 |
+
"step": 1660
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 21.14,
|
1038 |
+
"learning_rate": 6.25875e-05,
|
1039 |
+
"loss": 1.1904,
|
1040 |
+
"step": 1670
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 21.27,
|
1044 |
+
"learning_rate": 6.296249999999999e-05,
|
1045 |
+
"loss": 1.1456,
|
1046 |
+
"step": 1680
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 21.39,
|
1050 |
+
"learning_rate": 6.33375e-05,
|
1051 |
+
"loss": 1.1798,
|
1052 |
+
"step": 1690
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 21.52,
|
1056 |
+
"learning_rate": 6.37125e-05,
|
1057 |
+
"loss": 1.1122,
|
1058 |
+
"step": 1700
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"epoch": 21.65,
|
1062 |
+
"learning_rate": 6.408749999999999e-05,
|
1063 |
+
"loss": 1.1512,
|
1064 |
+
"step": 1710
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"epoch": 21.77,
|
1068 |
+
"learning_rate": 6.44625e-05,
|
1069 |
+
"loss": 1.1413,
|
1070 |
+
"step": 1720
|
1071 |
+
},
|
1072 |
+
{
|
1073 |
+
"epoch": 21.9,
|
1074 |
+
"learning_rate": 6.48375e-05,
|
1075 |
+
"loss": 1.1652,
|
1076 |
+
"step": 1730
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 22.03,
|
1080 |
+
"learning_rate": 6.521249999999999e-05,
|
1081 |
+
"loss": 1.177,
|
1082 |
+
"step": 1740
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 22.15,
|
1086 |
+
"learning_rate": 6.55875e-05,
|
1087 |
+
"loss": 1.1326,
|
1088 |
+
"step": 1750
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 22.28,
|
1092 |
+
"learning_rate": 6.596249999999998e-05,
|
1093 |
+
"loss": 1.1082,
|
1094 |
+
"step": 1760
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 22.41,
|
1098 |
+
"learning_rate": 6.633749999999999e-05,
|
1099 |
+
"loss": 1.1321,
|
1100 |
+
"step": 1770
|
1101 |
+
},
|
1102 |
+
{
|
1103 |
+
"epoch": 22.53,
|
1104 |
+
"learning_rate": 6.671249999999999e-05,
|
1105 |
+
"loss": 1.0721,
|
1106 |
+
"step": 1780
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"epoch": 22.66,
|
1110 |
+
"learning_rate": 6.70875e-05,
|
1111 |
+
"loss": 1.1199,
|
1112 |
+
"step": 1790
|
1113 |
+
},
|
1114 |
+
{
|
1115 |
+
"epoch": 22.78,
|
1116 |
+
"learning_rate": 6.746249999999999e-05,
|
1117 |
+
"loss": 1.1436,
|
1118 |
+
"step": 1800
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 22.91,
|
1122 |
+
"learning_rate": 6.783749999999999e-05,
|
1123 |
+
"loss": 1.0941,
|
1124 |
+
"step": 1810
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"epoch": 23.04,
|
1128 |
+
"learning_rate": 6.82125e-05,
|
1129 |
+
"loss": 1.0631,
|
1130 |
+
"step": 1820
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 23.16,
|
1134 |
+
"learning_rate": 6.85875e-05,
|
1135 |
+
"loss": 1.064,
|
1136 |
+
"step": 1830
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 23.29,
|
1140 |
+
"learning_rate": 6.896249999999999e-05,
|
1141 |
+
"loss": 1.0739,
|
1142 |
+
"step": 1840
|
1143 |
+
},
|
1144 |
+
{
|
1145 |
+
"epoch": 23.42,
|
1146 |
+
"learning_rate": 6.93375e-05,
|
1147 |
+
"loss": 1.0354,
|
1148 |
+
"step": 1850
|
1149 |
+
},
|
1150 |
+
{
|
1151 |
+
"epoch": 23.54,
|
1152 |
+
"learning_rate": 6.97125e-05,
|
1153 |
+
"loss": 1.0343,
|
1154 |
+
"step": 1860
|
1155 |
+
},
|
1156 |
+
{
|
1157 |
+
"epoch": 23.67,
|
1158 |
+
"learning_rate": 7.008749999999999e-05,
|
1159 |
+
"loss": 1.0724,
|
1160 |
+
"step": 1870
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 23.8,
|
1164 |
+
"learning_rate": 7.04625e-05,
|
1165 |
+
"loss": 1.0982,
|
1166 |
+
"step": 1880
|
1167 |
+
},
|
1168 |
+
{
|
1169 |
+
"epoch": 23.92,
|
1170 |
+
"learning_rate": 7.08375e-05,
|
1171 |
+
"loss": 1.065,
|
1172 |
+
"step": 1890
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 24.05,
|
1176 |
+
"learning_rate": 7.121249999999999e-05,
|
1177 |
+
"loss": 1.0754,
|
1178 |
+
"step": 1900
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 24.18,
|
1182 |
+
"learning_rate": 7.15875e-05,
|
1183 |
+
"loss": 1.0708,
|
1184 |
+
"step": 1910
|
1185 |
+
},
|
1186 |
+
{
|
1187 |
+
"epoch": 24.3,
|
1188 |
+
"learning_rate": 7.19625e-05,
|
1189 |
+
"loss": 1.0165,
|
1190 |
+
"step": 1920
|
1191 |
+
},
|
1192 |
+
{
|
1193 |
+
"epoch": 24.43,
|
1194 |
+
"learning_rate": 7.233749999999999e-05,
|
1195 |
+
"loss": 1.02,
|
1196 |
+
"step": 1930
|
1197 |
+
},
|
1198 |
+
{
|
1199 |
+
"epoch": 24.56,
|
1200 |
+
"learning_rate": 7.27125e-05,
|
1201 |
+
"loss": 1.0985,
|
1202 |
+
"step": 1940
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 24.68,
|
1206 |
+
"learning_rate": 7.30875e-05,
|
1207 |
+
"loss": 0.9746,
|
1208 |
+
"step": 1950
|
1209 |
+
},
|
1210 |
+
{
|
1211 |
+
"epoch": 24.81,
|
1212 |
+
"learning_rate": 7.346249999999999e-05,
|
1213 |
+
"loss": 1.0644,
|
1214 |
+
"step": 1960
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 24.94,
|
1218 |
+
"learning_rate": 7.38375e-05,
|
1219 |
+
"loss": 1.0104,
|
1220 |
+
"step": 1970
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 25.06,
|
1224 |
+
"learning_rate": 7.42125e-05,
|
1225 |
+
"loss": 1.028,
|
1226 |
+
"step": 1980
|
1227 |
+
},
|
1228 |
+
{
|
1229 |
+
"epoch": 25.19,
|
1230 |
+
"learning_rate": 7.45875e-05,
|
1231 |
+
"loss": 1.0107,
|
1232 |
+
"step": 1990
|
1233 |
+
},
|
1234 |
+
{
|
1235 |
+
"epoch": 25.32,
|
1236 |
+
"learning_rate": 7.49625e-05,
|
1237 |
+
"loss": 0.9997,
|
1238 |
+
"step": 2000
|
1239 |
+
},
|
1240 |
+
{
|
1241 |
+
"epoch": 25.32,
|
1242 |
+
"eval_cer": 0.2301165693690988,
|
1243 |
+
"eval_loss": 0.919084906578064,
|
1244 |
+
"eval_runtime": 44.703,
|
1245 |
+
"eval_samples_per_second": 10.76,
|
1246 |
+
"eval_steps_per_second": 1.365,
|
1247 |
+
"eval_wer": 0.5943894952251023,
|
1248 |
+
"step": 2000
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 25.44,
|
1252 |
+
"learning_rate": 7.465384615384615e-05,
|
1253 |
+
"loss": 0.9571,
|
1254 |
+
"step": 2010
|
1255 |
+
},
|
1256 |
+
{
|
1257 |
+
"epoch": 25.57,
|
1258 |
+
"learning_rate": 7.426923076923075e-05,
|
1259 |
+
"loss": 0.9801,
|
1260 |
+
"step": 2020
|
1261 |
+
},
|
1262 |
+
{
|
1263 |
+
"epoch": 25.7,
|
1264 |
+
"learning_rate": 7.388461538461538e-05,
|
1265 |
+
"loss": 0.9779,
|
1266 |
+
"step": 2030
|
1267 |
+
},
|
1268 |
+
{
|
1269 |
+
"epoch": 25.82,
|
1270 |
+
"learning_rate": 7.35e-05,
|
1271 |
+
"loss": 1.0168,
|
1272 |
+
"step": 2040
|
1273 |
+
},
|
1274 |
+
{
|
1275 |
+
"epoch": 25.95,
|
1276 |
+
"learning_rate": 7.31153846153846e-05,
|
1277 |
+
"loss": 0.9302,
|
1278 |
+
"step": 2050
|
1279 |
+
},
|
1280 |
+
{
|
1281 |
+
"epoch": 26.08,
|
1282 |
+
"learning_rate": 7.273076923076923e-05,
|
1283 |
+
"loss": 0.989,
|
1284 |
+
"step": 2060
|
1285 |
+
},
|
1286 |
+
{
|
1287 |
+
"epoch": 26.2,
|
1288 |
+
"learning_rate": 7.234615384615385e-05,
|
1289 |
+
"loss": 0.9357,
|
1290 |
+
"step": 2070
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 26.33,
|
1294 |
+
"learning_rate": 7.196153846153846e-05,
|
1295 |
+
"loss": 0.9858,
|
1296 |
+
"step": 2080
|
1297 |
+
},
|
1298 |
+
{
|
1299 |
+
"epoch": 26.46,
|
1300 |
+
"learning_rate": 7.157692307692307e-05,
|
1301 |
+
"loss": 0.9813,
|
1302 |
+
"step": 2090
|
1303 |
+
},
|
1304 |
+
{
|
1305 |
+
"epoch": 26.58,
|
1306 |
+
"learning_rate": 7.119230769230769e-05,
|
1307 |
+
"loss": 0.9554,
|
1308 |
+
"step": 2100
|
1309 |
+
},
|
1310 |
+
{
|
1311 |
+
"epoch": 26.71,
|
1312 |
+
"learning_rate": 7.08076923076923e-05,
|
1313 |
+
"loss": 0.8935,
|
1314 |
+
"step": 2110
|
1315 |
+
},
|
1316 |
+
{
|
1317 |
+
"epoch": 26.84,
|
1318 |
+
"learning_rate": 7.042307692307692e-05,
|
1319 |
+
"loss": 0.9955,
|
1320 |
+
"step": 2120
|
1321 |
+
},
|
1322 |
+
{
|
1323 |
+
"epoch": 26.96,
|
1324 |
+
"learning_rate": 7.003846153846154e-05,
|
1325 |
+
"loss": 0.9205,
|
1326 |
+
"step": 2130
|
1327 |
+
},
|
1328 |
+
{
|
1329 |
+
"epoch": 27.09,
|
1330 |
+
"learning_rate": 6.965384615384615e-05,
|
1331 |
+
"loss": 0.9527,
|
1332 |
+
"step": 2140
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 27.22,
|
1336 |
+
"learning_rate": 6.926923076923075e-05,
|
1337 |
+
"loss": 0.8899,
|
1338 |
+
"step": 2150
|
1339 |
+
},
|
1340 |
+
{
|
1341 |
+
"epoch": 27.34,
|
1342 |
+
"learning_rate": 6.888461538461538e-05,
|
1343 |
+
"loss": 0.9594,
|
1344 |
+
"step": 2160
|
1345 |
+
},
|
1346 |
+
{
|
1347 |
+
"epoch": 27.47,
|
1348 |
+
"learning_rate": 6.85e-05,
|
1349 |
+
"loss": 0.9061,
|
1350 |
+
"step": 2170
|
1351 |
+
},
|
1352 |
+
{
|
1353 |
+
"epoch": 27.59,
|
1354 |
+
"learning_rate": 6.81153846153846e-05,
|
1355 |
+
"loss": 0.94,
|
1356 |
+
"step": 2180
|
1357 |
+
},
|
1358 |
+
{
|
1359 |
+
"epoch": 27.72,
|
1360 |
+
"learning_rate": 6.773076923076923e-05,
|
1361 |
+
"loss": 0.8611,
|
1362 |
+
"step": 2190
|
1363 |
+
},
|
1364 |
+
{
|
1365 |
+
"epoch": 27.85,
|
1366 |
+
"learning_rate": 6.734615384615385e-05,
|
1367 |
+
"loss": 0.9391,
|
1368 |
+
"step": 2200
|
1369 |
+
},
|
1370 |
+
{
|
1371 |
+
"epoch": 27.97,
|
1372 |
+
"learning_rate": 6.696153846153846e-05,
|
1373 |
+
"loss": 0.8905,
|
1374 |
+
"step": 2210
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 28.1,
|
1378 |
+
"learning_rate": 6.657692307692307e-05,
|
1379 |
+
"loss": 0.888,
|
1380 |
+
"step": 2220
|
1381 |
+
},
|
1382 |
+
{
|
1383 |
+
"epoch": 28.23,
|
1384 |
+
"learning_rate": 6.619230769230769e-05,
|
1385 |
+
"loss": 0.8749,
|
1386 |
+
"step": 2230
|
1387 |
+
},
|
1388 |
+
{
|
1389 |
+
"epoch": 28.35,
|
1390 |
+
"learning_rate": 6.580769230769231e-05,
|
1391 |
+
"loss": 0.9331,
|
1392 |
+
"step": 2240
|
1393 |
+
},
|
1394 |
+
{
|
1395 |
+
"epoch": 28.48,
|
1396 |
+
"learning_rate": 6.542307692307692e-05,
|
1397 |
+
"loss": 0.8135,
|
1398 |
+
"step": 2250
|
1399 |
+
},
|
1400 |
+
{
|
1401 |
+
"epoch": 28.61,
|
1402 |
+
"learning_rate": 6.503846153846154e-05,
|
1403 |
+
"loss": 0.9121,
|
1404 |
+
"step": 2260
|
1405 |
+
},
|
1406 |
+
{
|
1407 |
+
"epoch": 28.73,
|
1408 |
+
"learning_rate": 6.465384615384615e-05,
|
1409 |
+
"loss": 0.859,
|
1410 |
+
"step": 2270
|
1411 |
+
},
|
1412 |
+
{
|
1413 |
+
"epoch": 28.86,
|
1414 |
+
"learning_rate": 6.426923076923076e-05,
|
1415 |
+
"loss": 0.8726,
|
1416 |
+
"step": 2280
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 28.99,
|
1420 |
+
"learning_rate": 6.388461538461538e-05,
|
1421 |
+
"loss": 0.8497,
|
1422 |
+
"step": 2290
|
1423 |
+
},
|
1424 |
+
{
|
1425 |
+
"epoch": 29.11,
|
1426 |
+
"learning_rate": 6.35e-05,
|
1427 |
+
"loss": 0.8673,
|
1428 |
+
"step": 2300
|
1429 |
+
},
|
1430 |
+
{
|
1431 |
+
"epoch": 29.24,
|
1432 |
+
"learning_rate": 6.31153846153846e-05,
|
1433 |
+
"loss": 0.8349,
|
1434 |
+
"step": 2310
|
1435 |
+
},
|
1436 |
+
{
|
1437 |
+
"epoch": 29.37,
|
1438 |
+
"learning_rate": 6.273076923076923e-05,
|
1439 |
+
"loss": 0.8946,
|
1440 |
+
"step": 2320
|
1441 |
+
},
|
1442 |
+
{
|
1443 |
+
"epoch": 29.49,
|
1444 |
+
"learning_rate": 6.234615384615384e-05,
|
1445 |
+
"loss": 0.8805,
|
1446 |
+
"step": 2330
|
1447 |
+
},
|
1448 |
+
{
|
1449 |
+
"epoch": 29.62,
|
1450 |
+
"learning_rate": 6.196153846153846e-05,
|
1451 |
+
"loss": 0.8752,
|
1452 |
+
"step": 2340
|
1453 |
+
},
|
1454 |
+
{
|
1455 |
+
"epoch": 29.75,
|
1456 |
+
"learning_rate": 6.157692307692307e-05,
|
1457 |
+
"loss": 0.8197,
|
1458 |
+
"step": 2350
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 29.87,
|
1462 |
+
"learning_rate": 6.119230769230769e-05,
|
1463 |
+
"loss": 0.8332,
|
1464 |
+
"step": 2360
|
1465 |
+
},
|
1466 |
+
{
|
1467 |
+
"epoch": 30.0,
|
1468 |
+
"learning_rate": 6.08076923076923e-05,
|
1469 |
+
"loss": 0.7933,
|
1470 |
+
"step": 2370
|
1471 |
+
},
|
1472 |
+
{
|
1473 |
+
"epoch": 30.13,
|
1474 |
+
"learning_rate": 6.0423076923076924e-05,
|
1475 |
+
"loss": 0.8712,
|
1476 |
+
"step": 2380
|
1477 |
+
},
|
1478 |
+
{
|
1479 |
+
"epoch": 30.25,
|
1480 |
+
"learning_rate": 6.003846153846153e-05,
|
1481 |
+
"loss": 0.824,
|
1482 |
+
"step": 2390
|
1483 |
+
},
|
1484 |
+
{
|
1485 |
+
"epoch": 30.38,
|
1486 |
+
"learning_rate": 5.965384615384615e-05,
|
1487 |
+
"loss": 0.8158,
|
1488 |
+
"step": 2400
|
1489 |
+
},
|
1490 |
+
{
|
1491 |
+
"epoch": 30.51,
|
1492 |
+
"learning_rate": 5.926923076923076e-05,
|
1493 |
+
"loss": 0.8218,
|
1494 |
+
"step": 2410
|
1495 |
+
},
|
1496 |
+
{
|
1497 |
+
"epoch": 30.63,
|
1498 |
+
"learning_rate": 5.888461538461538e-05,
|
1499 |
+
"loss": 0.8403,
|
1500 |
+
"step": 2420
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 30.76,
|
1504 |
+
"learning_rate": 5.85e-05,
|
1505 |
+
"loss": 0.7986,
|
1506 |
+
"step": 2430
|
1507 |
+
},
|
1508 |
+
{
|
1509 |
+
"epoch": 30.89,
|
1510 |
+
"learning_rate": 5.8115384615384614e-05,
|
1511 |
+
"loss": 0.8391,
|
1512 |
+
"step": 2440
|
1513 |
+
},
|
1514 |
+
{
|
1515 |
+
"epoch": 31.01,
|
1516 |
+
"learning_rate": 5.773076923076922e-05,
|
1517 |
+
"loss": 0.7736,
|
1518 |
+
"step": 2450
|
1519 |
+
},
|
1520 |
+
{
|
1521 |
+
"epoch": 31.14,
|
1522 |
+
"learning_rate": 5.734615384615384e-05,
|
1523 |
+
"loss": 0.8478,
|
1524 |
+
"step": 2460
|
1525 |
+
},
|
1526 |
+
{
|
1527 |
+
"epoch": 31.27,
|
1528 |
+
"learning_rate": 5.696153846153846e-05,
|
1529 |
+
"loss": 0.7728,
|
1530 |
+
"step": 2470
|
1531 |
+
},
|
1532 |
+
{
|
1533 |
+
"epoch": 31.39,
|
1534 |
+
"learning_rate": 5.6576923076923073e-05,
|
1535 |
+
"loss": 0.8231,
|
1536 |
+
"step": 2480
|
1537 |
+
},
|
1538 |
+
{
|
1539 |
+
"epoch": 31.52,
|
1540 |
+
"learning_rate": 5.619230769230769e-05,
|
1541 |
+
"loss": 0.7602,
|
1542 |
+
"step": 2490
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 31.65,
|
1546 |
+
"learning_rate": 5.58076923076923e-05,
|
1547 |
+
"loss": 0.7838,
|
1548 |
+
"step": 2500
|
1549 |
+
},
|
1550 |
+
{
|
1551 |
+
"epoch": 31.65,
|
1552 |
+
"eval_cer": 0.2152122088112177,
|
1553 |
+
"eval_loss": 0.8952043056488037,
|
1554 |
+
"eval_runtime": 45.1763,
|
1555 |
+
"eval_samples_per_second": 10.647,
|
1556 |
+
"eval_steps_per_second": 1.35,
|
1557 |
+
"eval_wer": 0.555593451568895,
|
1558 |
+
"step": 2500
|
1559 |
+
},
|
1560 |
+
{
|
1561 |
+
"epoch": 31.77,
|
1562 |
+
"learning_rate": 5.542307692307691e-05,
|
1563 |
+
"loss": 0.8065,
|
1564 |
+
"step": 2510
|
1565 |
+
},
|
1566 |
+
{
|
1567 |
+
"epoch": 31.9,
|
1568 |
+
"learning_rate": 5.503846153846153e-05,
|
1569 |
+
"loss": 0.773,
|
1570 |
+
"step": 2520
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 32.03,
|
1574 |
+
"learning_rate": 5.465384615384615e-05,
|
1575 |
+
"loss": 0.7854,
|
1576 |
+
"step": 2530
|
1577 |
+
},
|
1578 |
+
{
|
1579 |
+
"epoch": 32.15,
|
1580 |
+
"learning_rate": 5.426923076923076e-05,
|
1581 |
+
"loss": 0.7724,
|
1582 |
+
"step": 2540
|
1583 |
+
},
|
1584 |
+
{
|
1585 |
+
"epoch": 32.28,
|
1586 |
+
"learning_rate": 5.3884615384615384e-05,
|
1587 |
+
"loss": 0.7639,
|
1588 |
+
"step": 2550
|
1589 |
+
},
|
1590 |
+
{
|
1591 |
+
"epoch": 32.41,
|
1592 |
+
"learning_rate": 5.35e-05,
|
1593 |
+
"loss": 0.7993,
|
1594 |
+
"step": 2560
|
1595 |
+
},
|
1596 |
+
{
|
1597 |
+
"epoch": 32.53,
|
1598 |
+
"learning_rate": 5.311538461538461e-05,
|
1599 |
+
"loss": 0.7957,
|
1600 |
+
"step": 2570
|
1601 |
+
},
|
1602 |
+
{
|
1603 |
+
"epoch": 32.66,
|
1604 |
+
"learning_rate": 5.273076923076922e-05,
|
1605 |
+
"loss": 0.7686,
|
1606 |
+
"step": 2580
|
1607 |
+
},
|
1608 |
+
{
|
1609 |
+
"epoch": 32.78,
|
1610 |
+
"learning_rate": 5.234615384615384e-05,
|
1611 |
+
"loss": 0.8096,
|
1612 |
+
"step": 2590
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 32.91,
|
1616 |
+
"learning_rate": 5.196153846153846e-05,
|
1617 |
+
"loss": 0.7357,
|
1618 |
+
"step": 2600
|
1619 |
+
},
|
1620 |
+
{
|
1621 |
+
"epoch": 33.04,
|
1622 |
+
"learning_rate": 5.1576923076923074e-05,
|
1623 |
+
"loss": 0.7674,
|
1624 |
+
"step": 2610
|
1625 |
+
},
|
1626 |
+
{
|
1627 |
+
"epoch": 33.16,
|
1628 |
+
"learning_rate": 5.119230769230769e-05,
|
1629 |
+
"loss": 0.7989,
|
1630 |
+
"step": 2620
|
1631 |
+
},
|
1632 |
+
{
|
1633 |
+
"epoch": 33.29,
|
1634 |
+
"learning_rate": 5.08076923076923e-05,
|
1635 |
+
"loss": 0.7474,
|
1636 |
+
"step": 2630
|
1637 |
+
},
|
1638 |
+
{
|
1639 |
+
"epoch": 33.42,
|
1640 |
+
"learning_rate": 5.042307692307692e-05,
|
1641 |
+
"loss": 0.7153,
|
1642 |
+
"step": 2640
|
1643 |
+
},
|
1644 |
+
{
|
1645 |
+
"epoch": 33.54,
|
1646 |
+
"learning_rate": 5.0038461538461533e-05,
|
1647 |
+
"loss": 0.7109,
|
1648 |
+
"step": 2650
|
1649 |
+
},
|
1650 |
+
{
|
1651 |
+
"epoch": 33.67,
|
1652 |
+
"learning_rate": 4.965384615384615e-05,
|
1653 |
+
"loss": 0.7841,
|
1654 |
+
"step": 2660
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 33.8,
|
1658 |
+
"learning_rate": 4.926923076923076e-05,
|
1659 |
+
"loss": 0.762,
|
1660 |
+
"step": 2670
|
1661 |
+
},
|
1662 |
+
{
|
1663 |
+
"epoch": 33.92,
|
1664 |
+
"learning_rate": 4.8884615384615385e-05,
|
1665 |
+
"loss": 0.7414,
|
1666 |
+
"step": 2680
|
1667 |
+
},
|
1668 |
+
{
|
1669 |
+
"epoch": 34.05,
|
1670 |
+
"learning_rate": 4.849999999999999e-05,
|
1671 |
+
"loss": 0.7544,
|
1672 |
+
"step": 2690
|
1673 |
+
},
|
1674 |
+
{
|
1675 |
+
"epoch": 34.18,
|
1676 |
+
"learning_rate": 4.811538461538461e-05,
|
1677 |
+
"loss": 0.7338,
|
1678 |
+
"step": 2700
|
1679 |
+
},
|
1680 |
+
{
|
1681 |
+
"epoch": 34.3,
|
1682 |
+
"learning_rate": 4.773076923076922e-05,
|
1683 |
+
"loss": 0.7266,
|
1684 |
+
"step": 2710
|
1685 |
+
},
|
1686 |
+
{
|
1687 |
+
"epoch": 34.43,
|
1688 |
+
"learning_rate": 4.7346153846153845e-05,
|
1689 |
+
"loss": 0.7131,
|
1690 |
+
"step": 2720
|
1691 |
+
},
|
1692 |
+
{
|
1693 |
+
"epoch": 34.56,
|
1694 |
+
"learning_rate": 4.696153846153846e-05,
|
1695 |
+
"loss": 0.7291,
|
1696 |
+
"step": 2730
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 34.68,
|
1700 |
+
"learning_rate": 4.6576923076923074e-05,
|
1701 |
+
"loss": 0.7051,
|
1702 |
+
"step": 2740
|
1703 |
+
},
|
1704 |
+
{
|
1705 |
+
"epoch": 34.81,
|
1706 |
+
"learning_rate": 4.619230769230769e-05,
|
1707 |
+
"loss": 0.7643,
|
1708 |
+
"step": 2750
|
1709 |
+
},
|
1710 |
+
{
|
1711 |
+
"epoch": 34.94,
|
1712 |
+
"learning_rate": 4.5807692307692304e-05,
|
1713 |
+
"loss": 0.727,
|
1714 |
+
"step": 2760
|
1715 |
+
},
|
1716 |
+
{
|
1717 |
+
"epoch": 35.06,
|
1718 |
+
"learning_rate": 4.542307692307692e-05,
|
1719 |
+
"loss": 0.7142,
|
1720 |
+
"step": 2770
|
1721 |
+
},
|
1722 |
+
{
|
1723 |
+
"epoch": 35.19,
|
1724 |
+
"learning_rate": 4.5038461538461534e-05,
|
1725 |
+
"loss": 0.7055,
|
1726 |
+
"step": 2780
|
1727 |
+
},
|
1728 |
+
{
|
1729 |
+
"epoch": 35.32,
|
1730 |
+
"learning_rate": 4.465384615384615e-05,
|
1731 |
+
"loss": 0.7339,
|
1732 |
+
"step": 2790
|
1733 |
+
},
|
1734 |
+
{
|
1735 |
+
"epoch": 35.44,
|
1736 |
+
"learning_rate": 4.426923076923077e-05,
|
1737 |
+
"loss": 0.6956,
|
1738 |
+
"step": 2800
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 35.57,
|
1742 |
+
"learning_rate": 4.3884615384615385e-05,
|
1743 |
+
"loss": 0.7508,
|
1744 |
+
"step": 2810
|
1745 |
+
},
|
1746 |
+
{
|
1747 |
+
"epoch": 35.7,
|
1748 |
+
"learning_rate": 4.3499999999999993e-05,
|
1749 |
+
"loss": 0.7072,
|
1750 |
+
"step": 2820
|
1751 |
+
},
|
1752 |
+
{
|
1753 |
+
"epoch": 35.82,
|
1754 |
+
"learning_rate": 4.311538461538461e-05,
|
1755 |
+
"loss": 0.7103,
|
1756 |
+
"step": 2830
|
1757 |
+
},
|
1758 |
+
{
|
1759 |
+
"epoch": 35.95,
|
1760 |
+
"learning_rate": 4.273076923076923e-05,
|
1761 |
+
"loss": 0.6783,
|
1762 |
+
"step": 2840
|
1763 |
+
},
|
1764 |
+
{
|
1765 |
+
"epoch": 36.08,
|
1766 |
+
"learning_rate": 4.2346153846153845e-05,
|
1767 |
+
"loss": 0.7419,
|
1768 |
+
"step": 2850
|
1769 |
+
},
|
1770 |
+
{
|
1771 |
+
"epoch": 36.2,
|
1772 |
+
"learning_rate": 4.196153846153846e-05,
|
1773 |
+
"loss": 0.7091,
|
1774 |
+
"step": 2860
|
1775 |
+
},
|
1776 |
+
{
|
1777 |
+
"epoch": 36.33,
|
1778 |
+
"learning_rate": 4.1576923076923075e-05,
|
1779 |
+
"loss": 0.7073,
|
1780 |
+
"step": 2870
|
1781 |
+
},
|
1782 |
+
{
|
1783 |
+
"epoch": 36.46,
|
1784 |
+
"learning_rate": 4.119230769230768e-05,
|
1785 |
+
"loss": 0.6937,
|
1786 |
+
"step": 2880
|
1787 |
+
},
|
1788 |
+
{
|
1789 |
+
"epoch": 36.58,
|
1790 |
+
"learning_rate": 4.0807692307692305e-05,
|
1791 |
+
"loss": 0.756,
|
1792 |
+
"step": 2890
|
1793 |
+
},
|
1794 |
+
{
|
1795 |
+
"epoch": 36.71,
|
1796 |
+
"learning_rate": 4.042307692307692e-05,
|
1797 |
+
"loss": 0.6744,
|
1798 |
+
"step": 2900
|
1799 |
+
},
|
1800 |
+
{
|
1801 |
+
"epoch": 36.84,
|
1802 |
+
"learning_rate": 4.0038461538461534e-05,
|
1803 |
+
"loss": 0.7165,
|
1804 |
+
"step": 2910
|
1805 |
+
},
|
1806 |
+
{
|
1807 |
+
"epoch": 36.96,
|
1808 |
+
"learning_rate": 3.9653846153846156e-05,
|
1809 |
+
"loss": 0.6831,
|
1810 |
+
"step": 2920
|
1811 |
+
},
|
1812 |
+
{
|
1813 |
+
"epoch": 37.09,
|
1814 |
+
"learning_rate": 3.926923076923077e-05,
|
1815 |
+
"loss": 0.6894,
|
1816 |
+
"step": 2930
|
1817 |
+
},
|
1818 |
+
{
|
1819 |
+
"epoch": 37.22,
|
1820 |
+
"learning_rate": 3.888461538461538e-05,
|
1821 |
+
"loss": 0.6419,
|
1822 |
+
"step": 2940
|
1823 |
+
},
|
1824 |
+
{
|
1825 |
+
"epoch": 37.34,
|
1826 |
+
"learning_rate": 3.8499999999999994e-05,
|
1827 |
+
"loss": 0.7187,
|
1828 |
+
"step": 2950
|
1829 |
+
},
|
1830 |
+
{
|
1831 |
+
"epoch": 37.47,
|
1832 |
+
"learning_rate": 3.811538461538461e-05,
|
1833 |
+
"loss": 0.677,
|
1834 |
+
"step": 2960
|
1835 |
+
},
|
1836 |
+
{
|
1837 |
+
"epoch": 37.59,
|
1838 |
+
"learning_rate": 3.773076923076923e-05,
|
1839 |
+
"loss": 0.7263,
|
1840 |
+
"step": 2970
|
1841 |
+
},
|
1842 |
+
{
|
1843 |
+
"epoch": 37.72,
|
1844 |
+
"learning_rate": 3.734615384615384e-05,
|
1845 |
+
"loss": 0.6257,
|
1846 |
+
"step": 2980
|
1847 |
+
},
|
1848 |
+
{
|
1849 |
+
"epoch": 37.85,
|
1850 |
+
"learning_rate": 3.696153846153846e-05,
|
1851 |
+
"loss": 0.7051,
|
1852 |
+
"step": 2990
|
1853 |
+
},
|
1854 |
+
{
|
1855 |
+
"epoch": 37.97,
|
1856 |
+
"learning_rate": 3.6576923076923075e-05,
|
1857 |
+
"loss": 0.6665,
|
1858 |
+
"step": 3000
|
1859 |
+
},
|
1860 |
+
{
|
1861 |
+
"epoch": 37.97,
|
1862 |
+
"eval_cer": 0.2016781484053836,
|
1863 |
+
"eval_loss": 0.8907838463783264,
|
1864 |
+
"eval_runtime": 45.6242,
|
1865 |
+
"eval_samples_per_second": 10.543,
|
1866 |
+
"eval_steps_per_second": 1.337,
|
1867 |
+
"eval_wer": 0.5251534788540245,
|
1868 |
+
"step": 3000
|
1869 |
+
},
|
1870 |
+
{
|
1871 |
+
"epoch": 38.1,
|
1872 |
+
"learning_rate": 3.619230769230769e-05,
|
1873 |
+
"loss": 0.7016,
|
1874 |
+
"step": 3010
|
1875 |
+
},
|
1876 |
+
{
|
1877 |
+
"epoch": 38.23,
|
1878 |
+
"learning_rate": 3.5807692307692305e-05,
|
1879 |
+
"loss": 0.6585,
|
1880 |
+
"step": 3020
|
1881 |
+
},
|
1882 |
+
{
|
1883 |
+
"epoch": 38.35,
|
1884 |
+
"learning_rate": 3.542307692307692e-05,
|
1885 |
+
"loss": 0.6673,
|
1886 |
+
"step": 3030
|
1887 |
+
},
|
1888 |
+
{
|
1889 |
+
"epoch": 38.48,
|
1890 |
+
"learning_rate": 3.5038461538461535e-05,
|
1891 |
+
"loss": 0.6411,
|
1892 |
+
"step": 3040
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 38.61,
|
1896 |
+
"learning_rate": 3.465384615384615e-05,
|
1897 |
+
"loss": 0.7038,
|
1898 |
+
"step": 3050
|
1899 |
+
},
|
1900 |
+
{
|
1901 |
+
"epoch": 38.73,
|
1902 |
+
"learning_rate": 3.4269230769230765e-05,
|
1903 |
+
"loss": 0.6458,
|
1904 |
+
"step": 3060
|
1905 |
+
},
|
1906 |
+
{
|
1907 |
+
"epoch": 38.86,
|
1908 |
+
"learning_rate": 3.3884615384615386e-05,
|
1909 |
+
"loss": 0.7231,
|
1910 |
+
"step": 3070
|
1911 |
+
},
|
1912 |
+
{
|
1913 |
+
"epoch": 38.99,
|
1914 |
+
"learning_rate": 3.3499999999999994e-05,
|
1915 |
+
"loss": 0.6495,
|
1916 |
+
"step": 3080
|
1917 |
+
},
|
1918 |
+
{
|
1919 |
+
"epoch": 39.11,
|
1920 |
+
"learning_rate": 3.3115384615384616e-05,
|
1921 |
+
"loss": 0.6788,
|
1922 |
+
"step": 3090
|
1923 |
+
},
|
1924 |
+
{
|
1925 |
+
"epoch": 39.24,
|
1926 |
+
"learning_rate": 3.273076923076923e-05,
|
1927 |
+
"loss": 0.6452,
|
1928 |
+
"step": 3100
|
1929 |
+
},
|
1930 |
+
{
|
1931 |
+
"epoch": 39.37,
|
1932 |
+
"learning_rate": 3.2346153846153846e-05,
|
1933 |
+
"loss": 0.7015,
|
1934 |
+
"step": 3110
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 39.49,
|
1938 |
+
"learning_rate": 3.196153846153846e-05,
|
1939 |
+
"loss": 0.6518,
|
1940 |
+
"step": 3120
|
1941 |
+
},
|
1942 |
+
{
|
1943 |
+
"epoch": 39.62,
|
1944 |
+
"learning_rate": 3.1576923076923076e-05,
|
1945 |
+
"loss": 0.6757,
|
1946 |
+
"step": 3130
|
1947 |
+
},
|
1948 |
+
{
|
1949 |
+
"epoch": 39.75,
|
1950 |
+
"learning_rate": 3.119230769230769e-05,
|
1951 |
+
"loss": 0.6495,
|
1952 |
+
"step": 3140
|
1953 |
+
},
|
1954 |
+
{
|
1955 |
+
"epoch": 39.87,
|
1956 |
+
"learning_rate": 3.0807692307692305e-05,
|
1957 |
+
"loss": 0.6434,
|
1958 |
+
"step": 3150
|
1959 |
+
},
|
1960 |
+
{
|
1961 |
+
"epoch": 40.0,
|
1962 |
+
"learning_rate": 3.0423076923076924e-05,
|
1963 |
+
"loss": 0.6132,
|
1964 |
+
"step": 3160
|
1965 |
+
},
|
1966 |
+
{
|
1967 |
+
"epoch": 40.13,
|
1968 |
+
"learning_rate": 3.0038461538461535e-05,
|
1969 |
+
"loss": 0.6959,
|
1970 |
+
"step": 3170
|
1971 |
+
},
|
1972 |
+
{
|
1973 |
+
"epoch": 40.25,
|
1974 |
+
"learning_rate": 2.965384615384615e-05,
|
1975 |
+
"loss": 0.6468,
|
1976 |
+
"step": 3180
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 40.38,
|
1980 |
+
"learning_rate": 2.926923076923077e-05,
|
1981 |
+
"loss": 0.6681,
|
1982 |
+
"step": 3190
|
1983 |
+
},
|
1984 |
+
{
|
1985 |
+
"epoch": 40.51,
|
1986 |
+
"learning_rate": 2.888461538461538e-05,
|
1987 |
+
"loss": 0.6446,
|
1988 |
+
"step": 3200
|
1989 |
+
},
|
1990 |
+
{
|
1991 |
+
"epoch": 40.63,
|
1992 |
+
"learning_rate": 2.8499999999999998e-05,
|
1993 |
+
"loss": 0.6554,
|
1994 |
+
"step": 3210
|
1995 |
+
},
|
1996 |
+
{
|
1997 |
+
"epoch": 40.76,
|
1998 |
+
"learning_rate": 2.8115384615384613e-05,
|
1999 |
+
"loss": 0.6204,
|
2000 |
+
"step": 3220
|
2001 |
+
},
|
2002 |
+
{
|
2003 |
+
"epoch": 40.89,
|
2004 |
+
"learning_rate": 2.7730769230769228e-05,
|
2005 |
+
"loss": 0.677,
|
2006 |
+
"step": 3230
|
2007 |
+
},
|
2008 |
+
{
|
2009 |
+
"epoch": 41.01,
|
2010 |
+
"learning_rate": 2.7346153846153843e-05,
|
2011 |
+
"loss": 0.5961,
|
2012 |
+
"step": 3240
|
2013 |
+
},
|
2014 |
+
{
|
2015 |
+
"epoch": 41.14,
|
2016 |
+
"learning_rate": 2.696153846153846e-05,
|
2017 |
+
"loss": 0.665,
|
2018 |
+
"step": 3250
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 41.27,
|
2022 |
+
"learning_rate": 2.6576923076923073e-05,
|
2023 |
+
"loss": 0.6753,
|
2024 |
+
"step": 3260
|
2025 |
+
},
|
2026 |
+
{
|
2027 |
+
"epoch": 41.39,
|
2028 |
+
"learning_rate": 2.619230769230769e-05,
|
2029 |
+
"loss": 0.6387,
|
2030 |
+
"step": 3270
|
2031 |
+
},
|
2032 |
+
{
|
2033 |
+
"epoch": 41.52,
|
2034 |
+
"learning_rate": 2.5807692307692306e-05,
|
2035 |
+
"loss": 0.6281,
|
2036 |
+
"step": 3280
|
2037 |
+
},
|
2038 |
+
{
|
2039 |
+
"epoch": 41.65,
|
2040 |
+
"learning_rate": 2.542307692307692e-05,
|
2041 |
+
"loss": 0.6287,
|
2042 |
+
"step": 3290
|
2043 |
+
},
|
2044 |
+
{
|
2045 |
+
"epoch": 41.77,
|
2046 |
+
"learning_rate": 2.5038461538461536e-05,
|
2047 |
+
"loss": 0.6413,
|
2048 |
+
"step": 3300
|
2049 |
+
},
|
2050 |
+
{
|
2051 |
+
"epoch": 41.9,
|
2052 |
+
"learning_rate": 2.4653846153846154e-05,
|
2053 |
+
"loss": 0.6061,
|
2054 |
+
"step": 3310
|
2055 |
+
},
|
2056 |
+
{
|
2057 |
+
"epoch": 42.03,
|
2058 |
+
"learning_rate": 2.4269230769230765e-05,
|
2059 |
+
"loss": 0.648,
|
2060 |
+
"step": 3320
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 42.15,
|
2064 |
+
"learning_rate": 2.3884615384615384e-05,
|
2065 |
+
"loss": 0.5926,
|
2066 |
+
"step": 3330
|
2067 |
+
},
|
2068 |
+
{
|
2069 |
+
"epoch": 42.28,
|
2070 |
+
"learning_rate": 2.35e-05,
|
2071 |
+
"loss": 0.6366,
|
2072 |
+
"step": 3340
|
2073 |
+
},
|
2074 |
+
{
|
2075 |
+
"epoch": 42.41,
|
2076 |
+
"learning_rate": 2.3115384615384614e-05,
|
2077 |
+
"loss": 0.6625,
|
2078 |
+
"step": 3350
|
2079 |
+
},
|
2080 |
+
{
|
2081 |
+
"epoch": 42.53,
|
2082 |
+
"learning_rate": 2.273076923076923e-05,
|
2083 |
+
"loss": 0.634,
|
2084 |
+
"step": 3360
|
2085 |
+
},
|
2086 |
+
{
|
2087 |
+
"epoch": 42.66,
|
2088 |
+
"learning_rate": 2.2346153846153847e-05,
|
2089 |
+
"loss": 0.618,
|
2090 |
+
"step": 3370
|
2091 |
+
},
|
2092 |
+
{
|
2093 |
+
"epoch": 42.78,
|
2094 |
+
"learning_rate": 2.1961538461538458e-05,
|
2095 |
+
"loss": 0.5911,
|
2096 |
+
"step": 3380
|
2097 |
+
},
|
2098 |
+
{
|
2099 |
+
"epoch": 42.91,
|
2100 |
+
"learning_rate": 2.1576923076923076e-05,
|
2101 |
+
"loss": 0.5936,
|
2102 |
+
"step": 3390
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 43.04,
|
2106 |
+
"learning_rate": 2.119230769230769e-05,
|
2107 |
+
"loss": 0.6267,
|
2108 |
+
"step": 3400
|
2109 |
+
},
|
2110 |
+
{
|
2111 |
+
"epoch": 43.16,
|
2112 |
+
"learning_rate": 2.0807692307692303e-05,
|
2113 |
+
"loss": 0.6123,
|
2114 |
+
"step": 3410
|
2115 |
+
},
|
2116 |
+
{
|
2117 |
+
"epoch": 43.29,
|
2118 |
+
"learning_rate": 2.042307692307692e-05,
|
2119 |
+
"loss": 0.6398,
|
2120 |
+
"step": 3420
|
2121 |
+
},
|
2122 |
+
{
|
2123 |
+
"epoch": 43.42,
|
2124 |
+
"learning_rate": 2.003846153846154e-05,
|
2125 |
+
"loss": 0.606,
|
2126 |
+
"step": 3430
|
2127 |
+
},
|
2128 |
+
{
|
2129 |
+
"epoch": 43.54,
|
2130 |
+
"learning_rate": 1.965384615384615e-05,
|
2131 |
+
"loss": 0.6253,
|
2132 |
+
"step": 3440
|
2133 |
+
},
|
2134 |
+
{
|
2135 |
+
"epoch": 43.67,
|
2136 |
+
"learning_rate": 1.9269230769230766e-05,
|
2137 |
+
"loss": 0.5847,
|
2138 |
+
"step": 3450
|
2139 |
+
},
|
2140 |
+
{
|
2141 |
+
"epoch": 43.8,
|
2142 |
+
"learning_rate": 1.8884615384615384e-05,
|
2143 |
+
"loss": 0.6248,
|
2144 |
+
"step": 3460
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 43.92,
|
2148 |
+
"learning_rate": 1.85e-05,
|
2149 |
+
"loss": 0.5884,
|
2150 |
+
"step": 3470
|
2151 |
+
},
|
2152 |
+
{
|
2153 |
+
"epoch": 44.05,
|
2154 |
+
"learning_rate": 1.8115384615384614e-05,
|
2155 |
+
"loss": 0.6038,
|
2156 |
+
"step": 3480
|
2157 |
+
},
|
2158 |
+
{
|
2159 |
+
"epoch": 44.18,
|
2160 |
+
"learning_rate": 1.773076923076923e-05,
|
2161 |
+
"loss": 0.5888,
|
2162 |
+
"step": 3490
|
2163 |
+
},
|
2164 |
+
{
|
2165 |
+
"epoch": 44.3,
|
2166 |
+
"learning_rate": 1.7346153846153844e-05,
|
2167 |
+
"loss": 0.6265,
|
2168 |
+
"step": 3500
|
2169 |
+
},
|
2170 |
+
{
|
2171 |
+
"epoch": 44.3,
|
2172 |
+
"eval_cer": 0.19540855592889456,
|
2173 |
+
"eval_loss": 0.9062958359718323,
|
2174 |
+
"eval_runtime": 44.6904,
|
2175 |
+
"eval_samples_per_second": 10.763,
|
2176 |
+
"eval_steps_per_second": 1.365,
|
2177 |
+
"eval_wer": 0.5133015006821282,
|
2178 |
+
"step": 3500
|
2179 |
+
},
|
2180 |
+
{
|
2181 |
+
"epoch": 44.43,
|
2182 |
+
"learning_rate": 1.8412499999999997e-05,
|
2183 |
+
"loss": 0.6002,
|
2184 |
+
"step": 3510
|
2185 |
+
},
|
2186 |
+
{
|
2187 |
+
"epoch": 44.56,
|
2188 |
+
"learning_rate": 1.8037499999999998e-05,
|
2189 |
+
"loss": 0.6191,
|
2190 |
+
"step": 3520
|
2191 |
+
},
|
2192 |
+
{
|
2193 |
+
"epoch": 44.68,
|
2194 |
+
"learning_rate": 1.76625e-05,
|
2195 |
+
"loss": 0.5811,
|
2196 |
+
"step": 3530
|
2197 |
+
},
|
2198 |
+
{
|
2199 |
+
"epoch": 44.81,
|
2200 |
+
"learning_rate": 1.72875e-05,
|
2201 |
+
"loss": 0.6299,
|
2202 |
+
"step": 3540
|
2203 |
+
},
|
2204 |
+
{
|
2205 |
+
"epoch": 44.94,
|
2206 |
+
"learning_rate": 1.6912499999999998e-05,
|
2207 |
+
"loss": 0.5605,
|
2208 |
+
"step": 3550
|
2209 |
+
},
|
2210 |
+
{
|
2211 |
+
"epoch": 45.06,
|
2212 |
+
"learning_rate": 1.65375e-05,
|
2213 |
+
"loss": 0.6183,
|
2214 |
+
"step": 3560
|
2215 |
+
},
|
2216 |
+
{
|
2217 |
+
"epoch": 45.19,
|
2218 |
+
"learning_rate": 1.61625e-05,
|
2219 |
+
"loss": 0.5852,
|
2220 |
+
"step": 3570
|
2221 |
+
},
|
2222 |
+
{
|
2223 |
+
"epoch": 45.32,
|
2224 |
+
"learning_rate": 1.5787499999999997e-05,
|
2225 |
+
"loss": 0.594,
|
2226 |
+
"step": 3580
|
2227 |
+
},
|
2228 |
+
{
|
2229 |
+
"epoch": 45.44,
|
2230 |
+
"learning_rate": 1.54125e-05,
|
2231 |
+
"loss": 0.5965,
|
2232 |
+
"step": 3590
|
2233 |
+
},
|
2234 |
+
{
|
2235 |
+
"epoch": 45.57,
|
2236 |
+
"learning_rate": 1.50375e-05,
|
2237 |
+
"loss": 0.6005,
|
2238 |
+
"step": 3600
|
2239 |
+
},
|
2240 |
+
{
|
2241 |
+
"epoch": 45.7,
|
2242 |
+
"learning_rate": 1.4662499999999999e-05,
|
2243 |
+
"loss": 0.5884,
|
2244 |
+
"step": 3610
|
2245 |
+
},
|
2246 |
+
{
|
2247 |
+
"epoch": 45.82,
|
2248 |
+
"learning_rate": 1.4287499999999998e-05,
|
2249 |
+
"loss": 0.5884,
|
2250 |
+
"step": 3620
|
2251 |
+
},
|
2252 |
+
{
|
2253 |
+
"epoch": 45.95,
|
2254 |
+
"learning_rate": 1.39125e-05,
|
2255 |
+
"loss": 0.5628,
|
2256 |
+
"step": 3630
|
2257 |
+
},
|
2258 |
+
{
|
2259 |
+
"epoch": 46.08,
|
2260 |
+
"learning_rate": 1.3537499999999999e-05,
|
2261 |
+
"loss": 0.6339,
|
2262 |
+
"step": 3640
|
2263 |
+
},
|
2264 |
+
{
|
2265 |
+
"epoch": 46.2,
|
2266 |
+
"learning_rate": 1.3162499999999998e-05,
|
2267 |
+
"loss": 0.5578,
|
2268 |
+
"step": 3650
|
2269 |
+
},
|
2270 |
+
{
|
2271 |
+
"epoch": 46.33,
|
2272 |
+
"learning_rate": 1.2787499999999999e-05,
|
2273 |
+
"loss": 0.6239,
|
2274 |
+
"step": 3660
|
2275 |
+
},
|
2276 |
+
{
|
2277 |
+
"epoch": 46.46,
|
2278 |
+
"learning_rate": 1.24125e-05,
|
2279 |
+
"loss": 0.5872,
|
2280 |
+
"step": 3670
|
2281 |
+
},
|
2282 |
+
{
|
2283 |
+
"epoch": 46.58,
|
2284 |
+
"learning_rate": 1.20375e-05,
|
2285 |
+
"loss": 0.5697,
|
2286 |
+
"step": 3680
|
2287 |
+
},
|
2288 |
+
{
|
2289 |
+
"epoch": 46.71,
|
2290 |
+
"learning_rate": 1.1662499999999999e-05,
|
2291 |
+
"loss": 0.5475,
|
2292 |
+
"step": 3690
|
2293 |
+
},
|
2294 |
+
{
|
2295 |
+
"epoch": 46.84,
|
2296 |
+
"learning_rate": 1.1287499999999998e-05,
|
2297 |
+
"loss": 0.5979,
|
2298 |
+
"step": 3700
|
2299 |
+
},
|
2300 |
+
{
|
2301 |
+
"epoch": 46.96,
|
2302 |
+
"learning_rate": 1.0912499999999998e-05,
|
2303 |
+
"loss": 0.5742,
|
2304 |
+
"step": 3710
|
2305 |
+
},
|
2306 |
+
{
|
2307 |
+
"epoch": 47.09,
|
2308 |
+
"learning_rate": 1.05375e-05,
|
2309 |
+
"loss": 0.6054,
|
2310 |
+
"step": 3720
|
2311 |
+
},
|
2312 |
+
{
|
2313 |
+
"epoch": 47.22,
|
2314 |
+
"learning_rate": 1.01625e-05,
|
2315 |
+
"loss": 0.5777,
|
2316 |
+
"step": 3730
|
2317 |
+
},
|
2318 |
+
{
|
2319 |
+
"epoch": 47.34,
|
2320 |
+
"learning_rate": 9.787499999999999e-06,
|
2321 |
+
"loss": 0.5734,
|
2322 |
+
"step": 3740
|
2323 |
+
},
|
2324 |
+
{
|
2325 |
+
"epoch": 47.47,
|
2326 |
+
"learning_rate": 9.412499999999998e-06,
|
2327 |
+
"loss": 0.5322,
|
2328 |
+
"step": 3750
|
2329 |
+
},
|
2330 |
+
{
|
2331 |
+
"epoch": 47.59,
|
2332 |
+
"learning_rate": 9.0375e-06,
|
2333 |
+
"loss": 0.6287,
|
2334 |
+
"step": 3760
|
2335 |
+
},
|
2336 |
+
{
|
2337 |
+
"epoch": 47.72,
|
2338 |
+
"learning_rate": 8.6625e-06,
|
2339 |
+
"loss": 0.547,
|
2340 |
+
"step": 3770
|
2341 |
+
},
|
2342 |
+
{
|
2343 |
+
"epoch": 47.85,
|
2344 |
+
"learning_rate": 8.2875e-06,
|
2345 |
+
"loss": 0.6414,
|
2346 |
+
"step": 3780
|
2347 |
+
},
|
2348 |
+
{
|
2349 |
+
"epoch": 47.97,
|
2350 |
+
"learning_rate": 7.9125e-06,
|
2351 |
+
"loss": 0.5661,
|
2352 |
+
"step": 3790
|
2353 |
+
},
|
2354 |
+
{
|
2355 |
+
"epoch": 48.1,
|
2356 |
+
"learning_rate": 7.537499999999999e-06,
|
2357 |
+
"loss": 0.5893,
|
2358 |
+
"step": 3800
|
2359 |
+
},
|
2360 |
+
{
|
2361 |
+
"epoch": 48.23,
|
2362 |
+
"learning_rate": 7.1625e-06,
|
2363 |
+
"loss": 0.556,
|
2364 |
+
"step": 3810
|
2365 |
+
},
|
2366 |
+
{
|
2367 |
+
"epoch": 48.35,
|
2368 |
+
"learning_rate": 6.787499999999999e-06,
|
2369 |
+
"loss": 0.6265,
|
2370 |
+
"step": 3820
|
2371 |
+
},
|
2372 |
+
{
|
2373 |
+
"epoch": 48.48,
|
2374 |
+
"learning_rate": 6.4125e-06,
|
2375 |
+
"loss": 0.5644,
|
2376 |
+
"step": 3830
|
2377 |
+
},
|
2378 |
+
{
|
2379 |
+
"epoch": 48.61,
|
2380 |
+
"learning_rate": 6.037499999999999e-06,
|
2381 |
+
"loss": 0.6202,
|
2382 |
+
"step": 3840
|
2383 |
+
},
|
2384 |
+
{
|
2385 |
+
"epoch": 48.73,
|
2386 |
+
"learning_rate": 5.6624999999999996e-06,
|
2387 |
+
"loss": 0.5581,
|
2388 |
+
"step": 3850
|
2389 |
+
},
|
2390 |
+
{
|
2391 |
+
"epoch": 48.86,
|
2392 |
+
"learning_rate": 5.287499999999999e-06,
|
2393 |
+
"loss": 0.572,
|
2394 |
+
"step": 3860
|
2395 |
+
},
|
2396 |
+
{
|
2397 |
+
"epoch": 48.99,
|
2398 |
+
"learning_rate": 4.9125e-06,
|
2399 |
+
"loss": 0.5559,
|
2400 |
+
"step": 3870
|
2401 |
+
},
|
2402 |
+
{
|
2403 |
+
"epoch": 49.11,
|
2404 |
+
"learning_rate": 4.537499999999999e-06,
|
2405 |
+
"loss": 0.6013,
|
2406 |
+
"step": 3880
|
2407 |
+
},
|
2408 |
+
{
|
2409 |
+
"epoch": 49.24,
|
2410 |
+
"learning_rate": 4.1624999999999995e-06,
|
2411 |
+
"loss": 0.5498,
|
2412 |
+
"step": 3890
|
2413 |
+
},
|
2414 |
+
{
|
2415 |
+
"epoch": 49.37,
|
2416 |
+
"learning_rate": 3.7874999999999997e-06,
|
2417 |
+
"loss": 0.5883,
|
2418 |
+
"step": 3900
|
2419 |
+
},
|
2420 |
+
{
|
2421 |
+
"epoch": 49.49,
|
2422 |
+
"learning_rate": 3.4124999999999995e-06,
|
2423 |
+
"loss": 0.5777,
|
2424 |
+
"step": 3910
|
2425 |
+
},
|
2426 |
+
{
|
2427 |
+
"epoch": 49.62,
|
2428 |
+
"learning_rate": 3.0374999999999997e-06,
|
2429 |
+
"loss": 0.5768,
|
2430 |
+
"step": 3920
|
2431 |
+
},
|
2432 |
+
{
|
2433 |
+
"epoch": 49.75,
|
2434 |
+
"learning_rate": 2.6624999999999995e-06,
|
2435 |
+
"loss": 0.5603,
|
2436 |
+
"step": 3930
|
2437 |
+
},
|
2438 |
+
{
|
2439 |
+
"epoch": 49.87,
|
2440 |
+
"learning_rate": 2.2874999999999997e-06,
|
2441 |
+
"loss": 0.5814,
|
2442 |
+
"step": 3940
|
2443 |
+
},
|
2444 |
+
{
|
2445 |
+
"epoch": 50.0,
|
2446 |
+
"learning_rate": 1.9125e-06,
|
2447 |
+
"loss": 0.5562,
|
2448 |
+
"step": 3950
|
2449 |
+
},
|
2450 |
+
{
|
2451 |
+
"epoch": 50.13,
|
2452 |
+
"learning_rate": 1.5374999999999999e-06,
|
2453 |
+
"loss": 0.5858,
|
2454 |
+
"step": 3960
|
2455 |
+
},
|
2456 |
+
{
|
2457 |
+
"epoch": 50.25,
|
2458 |
+
"learning_rate": 1.1624999999999999e-06,
|
2459 |
+
"loss": 0.5279,
|
2460 |
+
"step": 3970
|
2461 |
+
},
|
2462 |
+
{
|
2463 |
+
"epoch": 50.38,
|
2464 |
+
"learning_rate": 7.875e-07,
|
2465 |
+
"loss": 0.5734,
|
2466 |
+
"step": 3980
|
2467 |
+
},
|
2468 |
+
{
|
2469 |
+
"epoch": 50.51,
|
2470 |
+
"learning_rate": 4.124999999999999e-07,
|
2471 |
+
"loss": 0.5895,
|
2472 |
+
"step": 3990
|
2473 |
+
},
|
2474 |
+
{
|
2475 |
+
"epoch": 50.63,
|
2476 |
+
"learning_rate": 3.75e-08,
|
2477 |
+
"loss": 0.5935,
|
2478 |
+
"step": 4000
|
2479 |
+
},
|
2480 |
+
{
|
2481 |
+
"epoch": 50.63,
|
2482 |
+
"eval_cer": 0.1969102547256584,
|
2483 |
+
"eval_loss": 0.9162458181381226,
|
2484 |
+
"eval_runtime": 44.8405,
|
2485 |
+
"eval_samples_per_second": 10.727,
|
2486 |
+
"eval_steps_per_second": 1.36,
|
2487 |
+
"eval_wer": 0.5156036834924966,
|
2488 |
+
"step": 4000
|
2489 |
+
},
|
2490 |
+
{
|
2491 |
+
"epoch": 50.76,
|
2492 |
+
"learning_rate": 1.4729999999999998e-05,
|
2493 |
+
"loss": 0.543,
|
2494 |
+
"step": 4010
|
2495 |
+
},
|
2496 |
+
{
|
2497 |
+
"epoch": 50.89,
|
2498 |
+
"learning_rate": 1.4429999999999997e-05,
|
2499 |
+
"loss": 0.6044,
|
2500 |
+
"step": 4020
|
2501 |
+
},
|
2502 |
+
{
|
2503 |
+
"epoch": 51.01,
|
2504 |
+
"learning_rate": 1.413e-05,
|
2505 |
+
"loss": 0.5749,
|
2506 |
+
"step": 4030
|
2507 |
+
},
|
2508 |
+
{
|
2509 |
+
"epoch": 51.14,
|
2510 |
+
"learning_rate": 1.383e-05,
|
2511 |
+
"loss": 0.6171,
|
2512 |
+
"step": 4040
|
2513 |
+
},
|
2514 |
+
{
|
2515 |
+
"epoch": 51.27,
|
2516 |
+
"learning_rate": 1.353e-05,
|
2517 |
+
"loss": 0.5767,
|
2518 |
+
"step": 4050
|
2519 |
+
},
|
2520 |
+
{
|
2521 |
+
"epoch": 51.39,
|
2522 |
+
"learning_rate": 1.3229999999999999e-05,
|
2523 |
+
"loss": 0.5749,
|
2524 |
+
"step": 4060
|
2525 |
+
},
|
2526 |
+
{
|
2527 |
+
"epoch": 51.52,
|
2528 |
+
"learning_rate": 1.2929999999999998e-05,
|
2529 |
+
"loss": 0.565,
|
2530 |
+
"step": 4070
|
2531 |
+
},
|
2532 |
+
{
|
2533 |
+
"epoch": 51.65,
|
2534 |
+
"learning_rate": 1.2629999999999998e-05,
|
2535 |
+
"loss": 0.5907,
|
2536 |
+
"step": 4080
|
2537 |
+
},
|
2538 |
+
{
|
2539 |
+
"epoch": 51.77,
|
2540 |
+
"learning_rate": 1.2329999999999999e-05,
|
2541 |
+
"loss": 0.575,
|
2542 |
+
"step": 4090
|
2543 |
+
},
|
2544 |
+
{
|
2545 |
+
"epoch": 51.9,
|
2546 |
+
"learning_rate": 1.2029999999999998e-05,
|
2547 |
+
"loss": 0.5692,
|
2548 |
+
"step": 4100
|
2549 |
+
},
|
2550 |
+
{
|
2551 |
+
"epoch": 52.03,
|
2552 |
+
"learning_rate": 1.173e-05,
|
2553 |
+
"loss": 0.5219,
|
2554 |
+
"step": 4110
|
2555 |
+
},
|
2556 |
+
{
|
2557 |
+
"epoch": 52.15,
|
2558 |
+
"learning_rate": 1.1429999999999999e-05,
|
2559 |
+
"loss": 0.5535,
|
2560 |
+
"step": 4120
|
2561 |
+
},
|
2562 |
+
{
|
2563 |
+
"epoch": 52.28,
|
2564 |
+
"learning_rate": 1.113e-05,
|
2565 |
+
"loss": 0.5519,
|
2566 |
+
"step": 4130
|
2567 |
+
},
|
2568 |
+
{
|
2569 |
+
"epoch": 52.41,
|
2570 |
+
"learning_rate": 1.083e-05,
|
2571 |
+
"loss": 0.5826,
|
2572 |
+
"step": 4140
|
2573 |
+
},
|
2574 |
+
{
|
2575 |
+
"epoch": 52.53,
|
2576 |
+
"learning_rate": 1.0529999999999999e-05,
|
2577 |
+
"loss": 0.5472,
|
2578 |
+
"step": 4150
|
2579 |
+
},
|
2580 |
+
{
|
2581 |
+
"epoch": 52.66,
|
2582 |
+
"learning_rate": 1.0229999999999999e-05,
|
2583 |
+
"loss": 0.5603,
|
2584 |
+
"step": 4160
|
2585 |
+
},
|
2586 |
+
{
|
2587 |
+
"epoch": 52.78,
|
2588 |
+
"learning_rate": 9.929999999999998e-06,
|
2589 |
+
"loss": 0.589,
|
2590 |
+
"step": 4170
|
2591 |
+
},
|
2592 |
+
{
|
2593 |
+
"epoch": 52.91,
|
2594 |
+
"learning_rate": 9.629999999999998e-06,
|
2595 |
+
"loss": 0.6005,
|
2596 |
+
"step": 4180
|
2597 |
+
},
|
2598 |
+
{
|
2599 |
+
"epoch": 53.04,
|
2600 |
+
"learning_rate": 9.329999999999999e-06,
|
2601 |
+
"loss": 0.5844,
|
2602 |
+
"step": 4190
|
2603 |
+
},
|
2604 |
+
{
|
2605 |
+
"epoch": 53.16,
|
2606 |
+
"learning_rate": 9.029999999999998e-06,
|
2607 |
+
"loss": 0.5779,
|
2608 |
+
"step": 4200
|
2609 |
+
},
|
2610 |
+
{
|
2611 |
+
"epoch": 53.29,
|
2612 |
+
"learning_rate": 8.73e-06,
|
2613 |
+
"loss": 0.5611,
|
2614 |
+
"step": 4210
|
2615 |
+
},
|
2616 |
+
{
|
2617 |
+
"epoch": 53.42,
|
2618 |
+
"learning_rate": 8.429999999999999e-06,
|
2619 |
+
"loss": 0.5859,
|
2620 |
+
"step": 4220
|
2621 |
+
},
|
2622 |
+
{
|
2623 |
+
"epoch": 53.54,
|
2624 |
+
"learning_rate": 8.129999999999998e-06,
|
2625 |
+
"loss": 0.5906,
|
2626 |
+
"step": 4230
|
2627 |
+
},
|
2628 |
+
{
|
2629 |
+
"epoch": 53.67,
|
2630 |
+
"learning_rate": 7.83e-06,
|
2631 |
+
"loss": 0.5522,
|
2632 |
+
"step": 4240
|
2633 |
+
},
|
2634 |
+
{
|
2635 |
+
"epoch": 53.8,
|
2636 |
+
"learning_rate": 7.56e-06,
|
2637 |
+
"loss": 0.5762,
|
2638 |
+
"step": 4250
|
2639 |
+
},
|
2640 |
+
{
|
2641 |
+
"epoch": 53.92,
|
2642 |
+
"learning_rate": 7.259999999999999e-06,
|
2643 |
+
"loss": 0.5498,
|
2644 |
+
"step": 4260
|
2645 |
+
},
|
2646 |
+
{
|
2647 |
+
"epoch": 54.05,
|
2648 |
+
"learning_rate": 6.959999999999999e-06,
|
2649 |
+
"loss": 0.5752,
|
2650 |
+
"step": 4270
|
2651 |
+
},
|
2652 |
+
{
|
2653 |
+
"epoch": 54.18,
|
2654 |
+
"learning_rate": 6.66e-06,
|
2655 |
+
"loss": 0.5428,
|
2656 |
+
"step": 4280
|
2657 |
+
},
|
2658 |
+
{
|
2659 |
+
"epoch": 54.3,
|
2660 |
+
"learning_rate": 6.359999999999999e-06,
|
2661 |
+
"loss": 0.5515,
|
2662 |
+
"step": 4290
|
2663 |
+
},
|
2664 |
+
{
|
2665 |
+
"epoch": 54.43,
|
2666 |
+
"learning_rate": 6.06e-06,
|
2667 |
+
"loss": 0.5662,
|
2668 |
+
"step": 4300
|
2669 |
+
},
|
2670 |
+
{
|
2671 |
+
"epoch": 54.56,
|
2672 |
+
"learning_rate": 5.759999999999999e-06,
|
2673 |
+
"loss": 0.5916,
|
2674 |
+
"step": 4310
|
2675 |
+
},
|
2676 |
+
{
|
2677 |
+
"epoch": 54.68,
|
2678 |
+
"learning_rate": 5.459999999999999e-06,
|
2679 |
+
"loss": 0.537,
|
2680 |
+
"step": 4320
|
2681 |
+
},
|
2682 |
+
{
|
2683 |
+
"epoch": 54.81,
|
2684 |
+
"learning_rate": 5.16e-06,
|
2685 |
+
"loss": 0.5744,
|
2686 |
+
"step": 4330
|
2687 |
+
},
|
2688 |
+
{
|
2689 |
+
"epoch": 54.94,
|
2690 |
+
"learning_rate": 4.859999999999999e-06,
|
2691 |
+
"loss": 0.5606,
|
2692 |
+
"step": 4340
|
2693 |
+
},
|
2694 |
+
{
|
2695 |
+
"epoch": 55.06,
|
2696 |
+
"learning_rate": 4.5599999999999995e-06,
|
2697 |
+
"loss": 0.5855,
|
2698 |
+
"step": 4350
|
2699 |
+
},
|
2700 |
+
{
|
2701 |
+
"epoch": 55.19,
|
2702 |
+
"learning_rate": 4.26e-06,
|
2703 |
+
"loss": 0.5486,
|
2704 |
+
"step": 4360
|
2705 |
+
},
|
2706 |
+
{
|
2707 |
+
"epoch": 55.32,
|
2708 |
+
"learning_rate": 3.959999999999999e-06,
|
2709 |
+
"loss": 0.5644,
|
2710 |
+
"step": 4370
|
2711 |
+
},
|
2712 |
+
{
|
2713 |
+
"epoch": 55.44,
|
2714 |
+
"learning_rate": 3.66e-06,
|
2715 |
+
"loss": 0.5525,
|
2716 |
+
"step": 4380
|
2717 |
+
},
|
2718 |
+
{
|
2719 |
+
"epoch": 55.57,
|
2720 |
+
"learning_rate": 3.3599999999999996e-06,
|
2721 |
+
"loss": 0.6088,
|
2722 |
+
"step": 4390
|
2723 |
+
},
|
2724 |
+
{
|
2725 |
+
"epoch": 55.7,
|
2726 |
+
"learning_rate": 3.06e-06,
|
2727 |
+
"loss": 0.5344,
|
2728 |
+
"step": 4400
|
2729 |
+
},
|
2730 |
+
{
|
2731 |
+
"epoch": 55.82,
|
2732 |
+
"learning_rate": 2.76e-06,
|
2733 |
+
"loss": 0.5379,
|
2734 |
+
"step": 4410
|
2735 |
+
},
|
2736 |
+
{
|
2737 |
+
"epoch": 55.95,
|
2738 |
+
"learning_rate": 2.46e-06,
|
2739 |
+
"loss": 0.5204,
|
2740 |
+
"step": 4420
|
2741 |
+
},
|
2742 |
+
{
|
2743 |
+
"epoch": 56.08,
|
2744 |
+
"learning_rate": 2.1599999999999996e-06,
|
2745 |
+
"loss": 0.5754,
|
2746 |
+
"step": 4430
|
2747 |
+
},
|
2748 |
+
{
|
2749 |
+
"epoch": 56.2,
|
2750 |
+
"learning_rate": 1.8599999999999998e-06,
|
2751 |
+
"loss": 0.5507,
|
2752 |
+
"step": 4440
|
2753 |
+
},
|
2754 |
+
{
|
2755 |
+
"epoch": 56.33,
|
2756 |
+
"learning_rate": 1.5599999999999999e-06,
|
2757 |
+
"loss": 0.5592,
|
2758 |
+
"step": 4450
|
2759 |
+
},
|
2760 |
+
{
|
2761 |
+
"epoch": 56.46,
|
2762 |
+
"learning_rate": 1.2599999999999998e-06,
|
2763 |
+
"loss": 0.5396,
|
2764 |
+
"step": 4460
|
2765 |
+
},
|
2766 |
+
{
|
2767 |
+
"epoch": 56.58,
|
2768 |
+
"learning_rate": 9.6e-07,
|
2769 |
+
"loss": 0.579,
|
2770 |
+
"step": 4470
|
2771 |
+
},
|
2772 |
+
{
|
2773 |
+
"epoch": 56.71,
|
2774 |
+
"learning_rate": 6.6e-07,
|
2775 |
+
"loss": 0.545,
|
2776 |
+
"step": 4480
|
2777 |
+
},
|
2778 |
+
{
|
2779 |
+
"epoch": 56.84,
|
2780 |
+
"learning_rate": 3.5999999999999994e-07,
|
2781 |
+
"loss": 0.5919,
|
2782 |
+
"step": 4490
|
2783 |
+
},
|
2784 |
+
{
|
2785 |
+
"epoch": 56.96,
|
2786 |
+
"learning_rate": 6e-08,
|
2787 |
+
"loss": 0.5174,
|
2788 |
+
"step": 4500
|
2789 |
+
},
|
2790 |
+
{
|
2791 |
+
"epoch": 56.96,
|
2792 |
+
"eval_cer": 0.19719182325005163,
|
2793 |
+
"eval_loss": 0.9287102818489075,
|
2794 |
+
"eval_runtime": 44.3461,
|
2795 |
+
"eval_samples_per_second": 10.847,
|
2796 |
+
"eval_steps_per_second": 1.376,
|
2797 |
+
"eval_wer": 0.5139836289222374,
|
2798 |
+
"step": 4500
|
2799 |
+
},
|
2800 |
+
{
|
2801 |
+
"epoch": 57.09,
|
2802 |
+
"learning_rate": 1.2299999999999999e-05,
|
2803 |
+
"loss": 0.5852,
|
2804 |
+
"step": 4510
|
2805 |
+
},
|
2806 |
+
{
|
2807 |
+
"epoch": 57.22,
|
2808 |
+
"learning_rate": 1.205e-05,
|
2809 |
+
"loss": 0.5752,
|
2810 |
+
"step": 4520
|
2811 |
+
},
|
2812 |
+
{
|
2813 |
+
"epoch": 57.34,
|
2814 |
+
"learning_rate": 1.1799999999999999e-05,
|
2815 |
+
"loss": 0.5433,
|
2816 |
+
"step": 4530
|
2817 |
+
},
|
2818 |
+
{
|
2819 |
+
"epoch": 57.47,
|
2820 |
+
"learning_rate": 1.155e-05,
|
2821 |
+
"loss": 0.5648,
|
2822 |
+
"step": 4540
|
2823 |
+
},
|
2824 |
+
{
|
2825 |
+
"epoch": 57.59,
|
2826 |
+
"learning_rate": 1.1299999999999999e-05,
|
2827 |
+
"loss": 0.5704,
|
2828 |
+
"step": 4550
|
2829 |
+
},
|
2830 |
+
{
|
2831 |
+
"epoch": 57.72,
|
2832 |
+
"learning_rate": 1.105e-05,
|
2833 |
+
"loss": 0.5216,
|
2834 |
+
"step": 4560
|
2835 |
+
},
|
2836 |
+
{
|
2837 |
+
"epoch": 57.85,
|
2838 |
+
"learning_rate": 1.0799999999999998e-05,
|
2839 |
+
"loss": 0.5998,
|
2840 |
+
"step": 4570
|
2841 |
+
},
|
2842 |
+
{
|
2843 |
+
"epoch": 57.97,
|
2844 |
+
"learning_rate": 1.0549999999999999e-05,
|
2845 |
+
"loss": 0.5439,
|
2846 |
+
"step": 4580
|
2847 |
+
},
|
2848 |
+
{
|
2849 |
+
"epoch": 58.1,
|
2850 |
+
"learning_rate": 1.03e-05,
|
2851 |
+
"loss": 0.5679,
|
2852 |
+
"step": 4590
|
2853 |
+
},
|
2854 |
+
{
|
2855 |
+
"epoch": 58.23,
|
2856 |
+
"learning_rate": 1.005e-05,
|
2857 |
+
"loss": 0.5621,
|
2858 |
+
"step": 4600
|
2859 |
+
},
|
2860 |
+
{
|
2861 |
+
"epoch": 58.35,
|
2862 |
+
"learning_rate": 9.799999999999998e-06,
|
2863 |
+
"loss": 0.5557,
|
2864 |
+
"step": 4610
|
2865 |
+
},
|
2866 |
+
{
|
2867 |
+
"epoch": 58.48,
|
2868 |
+
"learning_rate": 9.549999999999998e-06,
|
2869 |
+
"loss": 0.5525,
|
2870 |
+
"step": 4620
|
2871 |
+
},
|
2872 |
+
{
|
2873 |
+
"epoch": 58.61,
|
2874 |
+
"learning_rate": 9.299999999999999e-06,
|
2875 |
+
"loss": 0.6033,
|
2876 |
+
"step": 4630
|
2877 |
+
},
|
2878 |
+
{
|
2879 |
+
"epoch": 58.73,
|
2880 |
+
"learning_rate": 9.05e-06,
|
2881 |
+
"loss": 0.5059,
|
2882 |
+
"step": 4640
|
2883 |
+
},
|
2884 |
+
{
|
2885 |
+
"epoch": 58.86,
|
2886 |
+
"learning_rate": 8.799999999999999e-06,
|
2887 |
+
"loss": 0.5362,
|
2888 |
+
"step": 4650
|
2889 |
+
},
|
2890 |
+
{
|
2891 |
+
"epoch": 58.99,
|
2892 |
+
"learning_rate": 8.55e-06,
|
2893 |
+
"loss": 0.535,
|
2894 |
+
"step": 4660
|
2895 |
+
},
|
2896 |
+
{
|
2897 |
+
"epoch": 59.11,
|
2898 |
+
"learning_rate": 8.299999999999998e-06,
|
2899 |
+
"loss": 0.586,
|
2900 |
+
"step": 4670
|
2901 |
+
},
|
2902 |
+
{
|
2903 |
+
"epoch": 59.24,
|
2904 |
+
"learning_rate": 8.05e-06,
|
2905 |
+
"loss": 0.55,
|
2906 |
+
"step": 4680
|
2907 |
+
},
|
2908 |
+
{
|
2909 |
+
"epoch": 59.37,
|
2910 |
+
"learning_rate": 7.799999999999998e-06,
|
2911 |
+
"loss": 0.582,
|
2912 |
+
"step": 4690
|
2913 |
+
},
|
2914 |
+
{
|
2915 |
+
"epoch": 59.49,
|
2916 |
+
"learning_rate": 7.55e-06,
|
2917 |
+
"loss": 0.5065,
|
2918 |
+
"step": 4700
|
2919 |
+
},
|
2920 |
+
{
|
2921 |
+
"epoch": 59.62,
|
2922 |
+
"learning_rate": 7.299999999999999e-06,
|
2923 |
+
"loss": 0.5715,
|
2924 |
+
"step": 4710
|
2925 |
+
},
|
2926 |
+
{
|
2927 |
+
"epoch": 59.75,
|
2928 |
+
"learning_rate": 7.049999999999999e-06,
|
2929 |
+
"loss": 0.5359,
|
2930 |
+
"step": 4720
|
2931 |
+
},
|
2932 |
+
{
|
2933 |
+
"epoch": 59.87,
|
2934 |
+
"learning_rate": 6.8e-06,
|
2935 |
+
"loss": 0.5535,
|
2936 |
+
"step": 4730
|
2937 |
+
},
|
2938 |
+
{
|
2939 |
+
"epoch": 60.0,
|
2940 |
+
"learning_rate": 6.549999999999999e-06,
|
2941 |
+
"loss": 0.5256,
|
2942 |
+
"step": 4740
|
2943 |
+
},
|
2944 |
+
{
|
2945 |
+
"epoch": 60.13,
|
2946 |
+
"learning_rate": 6.3e-06,
|
2947 |
+
"loss": 0.5869,
|
2948 |
+
"step": 4750
|
2949 |
+
},
|
2950 |
+
{
|
2951 |
+
"epoch": 60.25,
|
2952 |
+
"learning_rate": 6.05e-06,
|
2953 |
+
"loss": 0.4978,
|
2954 |
+
"step": 4760
|
2955 |
+
},
|
2956 |
+
{
|
2957 |
+
"epoch": 60.38,
|
2958 |
+
"learning_rate": 5.7999999999999995e-06,
|
2959 |
+
"loss": 0.5402,
|
2960 |
+
"step": 4770
|
2961 |
+
},
|
2962 |
+
{
|
2963 |
+
"epoch": 60.51,
|
2964 |
+
"learning_rate": 5.549999999999999e-06,
|
2965 |
+
"loss": 0.5607,
|
2966 |
+
"step": 4780
|
2967 |
+
},
|
2968 |
+
{
|
2969 |
+
"epoch": 60.63,
|
2970 |
+
"learning_rate": 5.3e-06,
|
2971 |
+
"loss": 0.5583,
|
2972 |
+
"step": 4790
|
2973 |
+
},
|
2974 |
+
{
|
2975 |
+
"epoch": 60.76,
|
2976 |
+
"learning_rate": 5.049999999999999e-06,
|
2977 |
+
"loss": 0.5382,
|
2978 |
+
"step": 4800
|
2979 |
+
},
|
2980 |
+
{
|
2981 |
+
"epoch": 60.89,
|
2982 |
+
"learning_rate": 4.8e-06,
|
2983 |
+
"loss": 0.5498,
|
2984 |
+
"step": 4810
|
2985 |
+
},
|
2986 |
+
{
|
2987 |
+
"epoch": 61.01,
|
2988 |
+
"learning_rate": 4.55e-06,
|
2989 |
+
"loss": 0.5443,
|
2990 |
+
"step": 4820
|
2991 |
+
},
|
2992 |
+
{
|
2993 |
+
"epoch": 61.14,
|
2994 |
+
"learning_rate": 4.2999999999999995e-06,
|
2995 |
+
"loss": 0.5579,
|
2996 |
+
"step": 4830
|
2997 |
+
},
|
2998 |
+
{
|
2999 |
+
"epoch": 61.27,
|
3000 |
+
"learning_rate": 4.049999999999999e-06,
|
3001 |
+
"loss": 0.517,
|
3002 |
+
"step": 4840
|
3003 |
+
},
|
3004 |
+
{
|
3005 |
+
"epoch": 61.39,
|
3006 |
+
"learning_rate": 3.7999999999999996e-06,
|
3007 |
+
"loss": 0.566,
|
3008 |
+
"step": 4850
|
3009 |
+
},
|
3010 |
+
{
|
3011 |
+
"epoch": 61.52,
|
3012 |
+
"learning_rate": 3.5499999999999995e-06,
|
3013 |
+
"loss": 0.572,
|
3014 |
+
"step": 4860
|
3015 |
+
},
|
3016 |
+
{
|
3017 |
+
"epoch": 61.65,
|
3018 |
+
"learning_rate": 3.2999999999999993e-06,
|
3019 |
+
"loss": 0.5425,
|
3020 |
+
"step": 4870
|
3021 |
+
},
|
3022 |
+
{
|
3023 |
+
"epoch": 61.77,
|
3024 |
+
"learning_rate": 3.0499999999999996e-06,
|
3025 |
+
"loss": 0.5617,
|
3026 |
+
"step": 4880
|
3027 |
+
},
|
3028 |
+
{
|
3029 |
+
"epoch": 61.9,
|
3030 |
+
"learning_rate": 2.8e-06,
|
3031 |
+
"loss": 0.5352,
|
3032 |
+
"step": 4890
|
3033 |
+
},
|
3034 |
+
{
|
3035 |
+
"epoch": 62.03,
|
3036 |
+
"learning_rate": 2.55e-06,
|
3037 |
+
"loss": 0.5328,
|
3038 |
+
"step": 4900
|
3039 |
+
},
|
3040 |
+
{
|
3041 |
+
"epoch": 62.15,
|
3042 |
+
"learning_rate": 2.2999999999999996e-06,
|
3043 |
+
"loss": 0.567,
|
3044 |
+
"step": 4910
|
3045 |
+
},
|
3046 |
+
{
|
3047 |
+
"epoch": 62.28,
|
3048 |
+
"learning_rate": 2.05e-06,
|
3049 |
+
"loss": 0.554,
|
3050 |
+
"step": 4920
|
3051 |
+
},
|
3052 |
+
{
|
3053 |
+
"epoch": 62.41,
|
3054 |
+
"learning_rate": 1.8e-06,
|
3055 |
+
"loss": 0.5846,
|
3056 |
+
"step": 4930
|
3057 |
+
},
|
3058 |
+
{
|
3059 |
+
"epoch": 62.53,
|
3060 |
+
"learning_rate": 1.5499999999999998e-06,
|
3061 |
+
"loss": 0.5451,
|
3062 |
+
"step": 4940
|
3063 |
+
},
|
3064 |
+
{
|
3065 |
+
"epoch": 62.66,
|
3066 |
+
"learning_rate": 1.2999999999999998e-06,
|
3067 |
+
"loss": 0.5251,
|
3068 |
+
"step": 4950
|
3069 |
+
},
|
3070 |
+
{
|
3071 |
+
"epoch": 62.78,
|
3072 |
+
"learning_rate": 1.05e-06,
|
3073 |
+
"loss": 0.5373,
|
3074 |
+
"step": 4960
|
3075 |
+
},
|
3076 |
+
{
|
3077 |
+
"epoch": 62.91,
|
3078 |
+
"learning_rate": 7.999999999999999e-07,
|
3079 |
+
"loss": 0.5245,
|
3080 |
+
"step": 4970
|
3081 |
+
},
|
3082 |
+
{
|
3083 |
+
"epoch": 63.04,
|
3084 |
+
"learning_rate": 5.499999999999999e-07,
|
3085 |
+
"loss": 0.5535,
|
3086 |
+
"step": 4980
|
3087 |
+
},
|
3088 |
+
{
|
3089 |
+
"epoch": 63.16,
|
3090 |
+
"learning_rate": 3e-07,
|
3091 |
+
"loss": 0.545,
|
3092 |
+
"step": 4990
|
3093 |
+
},
|
3094 |
+
{
|
3095 |
+
"epoch": 63.29,
|
3096 |
+
"learning_rate": 4.999999999999999e-08,
|
3097 |
+
"loss": 0.5462,
|
3098 |
+
"step": 5000
|
3099 |
+
},
|
3100 |
+
{
|
3101 |
+
"epoch": 63.29,
|
3102 |
+
"eval_cer": 0.19739830683460666,
|
3103 |
+
"eval_loss": 0.9370450973510742,
|
3104 |
+
"eval_runtime": 45.0983,
|
3105 |
+
"eval_samples_per_second": 10.666,
|
3106 |
+
"eval_steps_per_second": 1.353,
|
3107 |
+
"eval_wer": 0.5138130968622101,
|
3108 |
+
"step": 5000
|
3109 |
+
},
|
3110 |
+
{
|
3111 |
+
"epoch": 63.42,
|
3112 |
+
"learning_rate": 8.2e-06,
|
3113 |
+
"loss": 0.5146,
|
3114 |
+
"step": 5010
|
3115 |
+
},
|
3116 |
+
{
|
3117 |
+
"epoch": 63.54,
|
3118 |
+
"learning_rate": 8.033333333333333e-06,
|
3119 |
+
"loss": 0.5334,
|
3120 |
+
"step": 5020
|
3121 |
+
},
|
3122 |
+
{
|
3123 |
+
"epoch": 63.67,
|
3124 |
+
"learning_rate": 7.866666666666667e-06,
|
3125 |
+
"loss": 0.5824,
|
3126 |
+
"step": 5030
|
3127 |
+
},
|
3128 |
+
{
|
3129 |
+
"epoch": 63.8,
|
3130 |
+
"learning_rate": 7.699999999999999e-06,
|
3131 |
+
"loss": 0.5354,
|
3132 |
+
"step": 5040
|
3133 |
+
},
|
3134 |
+
{
|
3135 |
+
"epoch": 63.92,
|
3136 |
+
"learning_rate": 7.533333333333333e-06,
|
3137 |
+
"loss": 0.5225,
|
3138 |
+
"step": 5050
|
3139 |
+
},
|
3140 |
+
{
|
3141 |
+
"epoch": 64.05,
|
3142 |
+
"learning_rate": 7.366666666666666e-06,
|
3143 |
+
"loss": 0.5296,
|
3144 |
+
"step": 5060
|
3145 |
+
},
|
3146 |
+
{
|
3147 |
+
"epoch": 64.18,
|
3148 |
+
"learning_rate": 7.2e-06,
|
3149 |
+
"loss": 0.525,
|
3150 |
+
"step": 5070
|
3151 |
+
},
|
3152 |
+
{
|
3153 |
+
"epoch": 64.3,
|
3154 |
+
"learning_rate": 7.033333333333333e-06,
|
3155 |
+
"loss": 0.5549,
|
3156 |
+
"step": 5080
|
3157 |
+
},
|
3158 |
+
{
|
3159 |
+
"epoch": 64.43,
|
3160 |
+
"learning_rate": 6.8666666666666664e-06,
|
3161 |
+
"loss": 0.5579,
|
3162 |
+
"step": 5090
|
3163 |
+
},
|
3164 |
+
{
|
3165 |
+
"epoch": 64.56,
|
3166 |
+
"learning_rate": 6.699999999999999e-06,
|
3167 |
+
"loss": 0.5527,
|
3168 |
+
"step": 5100
|
3169 |
+
},
|
3170 |
+
{
|
3171 |
+
"epoch": 64.68,
|
3172 |
+
"learning_rate": 6.533333333333333e-06,
|
3173 |
+
"loss": 0.5191,
|
3174 |
+
"step": 5110
|
3175 |
+
},
|
3176 |
+
{
|
3177 |
+
"epoch": 64.81,
|
3178 |
+
"learning_rate": 6.366666666666666e-06,
|
3179 |
+
"loss": 0.5591,
|
3180 |
+
"step": 5120
|
3181 |
+
},
|
3182 |
+
{
|
3183 |
+
"epoch": 64.94,
|
3184 |
+
"learning_rate": 6.199999999999999e-06,
|
3185 |
+
"loss": 0.5371,
|
3186 |
+
"step": 5130
|
3187 |
+
},
|
3188 |
+
{
|
3189 |
+
"epoch": 65.06,
|
3190 |
+
"learning_rate": 6.033333333333333e-06,
|
3191 |
+
"loss": 0.5527,
|
3192 |
+
"step": 5140
|
3193 |
+
},
|
3194 |
+
{
|
3195 |
+
"epoch": 65.19,
|
3196 |
+
"learning_rate": 5.866666666666666e-06,
|
3197 |
+
"loss": 0.5318,
|
3198 |
+
"step": 5150
|
3199 |
+
},
|
3200 |
+
{
|
3201 |
+
"epoch": 65.32,
|
3202 |
+
"learning_rate": 5.7e-06,
|
3203 |
+
"loss": 0.5684,
|
3204 |
+
"step": 5160
|
3205 |
+
},
|
3206 |
+
{
|
3207 |
+
"epoch": 65.44,
|
3208 |
+
"learning_rate": 5.533333333333333e-06,
|
3209 |
+
"loss": 0.528,
|
3210 |
+
"step": 5170
|
3211 |
+
},
|
3212 |
+
{
|
3213 |
+
"epoch": 65.57,
|
3214 |
+
"learning_rate": 5.366666666666666e-06,
|
3215 |
+
"loss": 0.5366,
|
3216 |
+
"step": 5180
|
3217 |
+
},
|
3218 |
+
{
|
3219 |
+
"epoch": 65.7,
|
3220 |
+
"learning_rate": 5.199999999999999e-06,
|
3221 |
+
"loss": 0.5482,
|
3222 |
+
"step": 5190
|
3223 |
+
},
|
3224 |
+
{
|
3225 |
+
"epoch": 65.82,
|
3226 |
+
"learning_rate": 5.033333333333332e-06,
|
3227 |
+
"loss": 0.5402,
|
3228 |
+
"step": 5200
|
3229 |
+
},
|
3230 |
+
{
|
3231 |
+
"epoch": 65.95,
|
3232 |
+
"learning_rate": 4.866666666666666e-06,
|
3233 |
+
"loss": 0.5568,
|
3234 |
+
"step": 5210
|
3235 |
+
},
|
3236 |
+
{
|
3237 |
+
"epoch": 66.08,
|
3238 |
+
"learning_rate": 4.699999999999999e-06,
|
3239 |
+
"loss": 0.5466,
|
3240 |
+
"step": 5220
|
3241 |
+
},
|
3242 |
+
{
|
3243 |
+
"epoch": 66.2,
|
3244 |
+
"learning_rate": 4.533333333333333e-06,
|
3245 |
+
"loss": 0.5353,
|
3246 |
+
"step": 5230
|
3247 |
+
},
|
3248 |
+
{
|
3249 |
+
"epoch": 66.33,
|
3250 |
+
"learning_rate": 4.366666666666667e-06,
|
3251 |
+
"loss": 0.5629,
|
3252 |
+
"step": 5240
|
3253 |
+
},
|
3254 |
+
{
|
3255 |
+
"epoch": 66.46,
|
3256 |
+
"learning_rate": 4.2e-06,
|
3257 |
+
"loss": 0.5227,
|
3258 |
+
"step": 5250
|
3259 |
+
},
|
3260 |
+
{
|
3261 |
+
"epoch": 66.58,
|
3262 |
+
"learning_rate": 4.033333333333333e-06,
|
3263 |
+
"loss": 0.5126,
|
3264 |
+
"step": 5260
|
3265 |
+
},
|
3266 |
+
{
|
3267 |
+
"epoch": 66.71,
|
3268 |
+
"learning_rate": 3.866666666666666e-06,
|
3269 |
+
"loss": 0.5173,
|
3270 |
+
"step": 5270
|
3271 |
+
},
|
3272 |
+
{
|
3273 |
+
"epoch": 66.84,
|
3274 |
+
"learning_rate": 3.6999999999999997e-06,
|
3275 |
+
"loss": 0.5773,
|
3276 |
+
"step": 5280
|
3277 |
+
},
|
3278 |
+
{
|
3279 |
+
"epoch": 66.96,
|
3280 |
+
"learning_rate": 3.533333333333333e-06,
|
3281 |
+
"loss": 0.5131,
|
3282 |
+
"step": 5290
|
3283 |
+
},
|
3284 |
+
{
|
3285 |
+
"epoch": 67.09,
|
3286 |
+
"learning_rate": 3.3666666666666665e-06,
|
3287 |
+
"loss": 0.5592,
|
3288 |
+
"step": 5300
|
3289 |
+
},
|
3290 |
+
{
|
3291 |
+
"epoch": 67.22,
|
3292 |
+
"learning_rate": 3.1999999999999994e-06,
|
3293 |
+
"loss": 0.5164,
|
3294 |
+
"step": 5310
|
3295 |
+
},
|
3296 |
+
{
|
3297 |
+
"epoch": 67.34,
|
3298 |
+
"learning_rate": 3.033333333333333e-06,
|
3299 |
+
"loss": 0.5166,
|
3300 |
+
"step": 5320
|
3301 |
+
},
|
3302 |
+
{
|
3303 |
+
"epoch": 67.47,
|
3304 |
+
"learning_rate": 2.866666666666666e-06,
|
3305 |
+
"loss": 0.5079,
|
3306 |
+
"step": 5330
|
3307 |
+
},
|
3308 |
+
{
|
3309 |
+
"epoch": 67.59,
|
3310 |
+
"learning_rate": 2.6999999999999996e-06,
|
3311 |
+
"loss": 0.547,
|
3312 |
+
"step": 5340
|
3313 |
+
},
|
3314 |
+
{
|
3315 |
+
"epoch": 67.72,
|
3316 |
+
"learning_rate": 2.533333333333333e-06,
|
3317 |
+
"loss": 0.5188,
|
3318 |
+
"step": 5350
|
3319 |
+
},
|
3320 |
+
{
|
3321 |
+
"epoch": 67.85,
|
3322 |
+
"learning_rate": 2.3666666666666667e-06,
|
3323 |
+
"loss": 0.5779,
|
3324 |
+
"step": 5360
|
3325 |
+
},
|
3326 |
+
{
|
3327 |
+
"epoch": 67.97,
|
3328 |
+
"learning_rate": 2.1999999999999997e-06,
|
3329 |
+
"loss": 0.5424,
|
3330 |
+
"step": 5370
|
3331 |
+
},
|
3332 |
+
{
|
3333 |
+
"epoch": 68.1,
|
3334 |
+
"learning_rate": 2.033333333333333e-06,
|
3335 |
+
"loss": 0.5307,
|
3336 |
+
"step": 5380
|
3337 |
+
},
|
3338 |
+
{
|
3339 |
+
"epoch": 68.23,
|
3340 |
+
"learning_rate": 1.8666666666666664e-06,
|
3341 |
+
"loss": 0.5353,
|
3342 |
+
"step": 5390
|
3343 |
+
},
|
3344 |
+
{
|
3345 |
+
"epoch": 68.35,
|
3346 |
+
"learning_rate": 1.7e-06,
|
3347 |
+
"loss": 0.5521,
|
3348 |
+
"step": 5400
|
3349 |
+
},
|
3350 |
+
{
|
3351 |
+
"epoch": 68.48,
|
3352 |
+
"learning_rate": 1.5333333333333332e-06,
|
3353 |
+
"loss": 0.5024,
|
3354 |
+
"step": 5410
|
3355 |
+
},
|
3356 |
+
{
|
3357 |
+
"epoch": 68.61,
|
3358 |
+
"learning_rate": 1.3666666666666666e-06,
|
3359 |
+
"loss": 0.5765,
|
3360 |
+
"step": 5420
|
3361 |
+
},
|
3362 |
+
{
|
3363 |
+
"epoch": 68.73,
|
3364 |
+
"learning_rate": 1.2e-06,
|
3365 |
+
"loss": 0.497,
|
3366 |
+
"step": 5430
|
3367 |
+
},
|
3368 |
+
{
|
3369 |
+
"epoch": 68.86,
|
3370 |
+
"learning_rate": 1.0333333333333333e-06,
|
3371 |
+
"loss": 0.5822,
|
3372 |
+
"step": 5440
|
3373 |
+
},
|
3374 |
+
{
|
3375 |
+
"epoch": 68.99,
|
3376 |
+
"learning_rate": 8.666666666666666e-07,
|
3377 |
+
"loss": 0.5189,
|
3378 |
+
"step": 5450
|
3379 |
+
},
|
3380 |
+
{
|
3381 |
+
"epoch": 69.11,
|
3382 |
+
"learning_rate": 7e-07,
|
3383 |
+
"loss": 0.5356,
|
3384 |
+
"step": 5460
|
3385 |
+
},
|
3386 |
+
{
|
3387 |
+
"epoch": 69.24,
|
3388 |
+
"learning_rate": 5.333333333333333e-07,
|
3389 |
+
"loss": 0.5289,
|
3390 |
+
"step": 5470
|
3391 |
+
},
|
3392 |
+
{
|
3393 |
+
"epoch": 69.37,
|
3394 |
+
"learning_rate": 3.666666666666666e-07,
|
3395 |
+
"loss": 0.5522,
|
3396 |
+
"step": 5480
|
3397 |
+
},
|
3398 |
+
{
|
3399 |
+
"epoch": 69.49,
|
3400 |
+
"learning_rate": 1.9999999999999996e-07,
|
3401 |
+
"loss": 0.4897,
|
3402 |
+
"step": 5490
|
3403 |
+
},
|
3404 |
+
{
|
3405 |
+
"epoch": 69.62,
|
3406 |
+
"learning_rate": 3.3333333333333334e-08,
|
3407 |
+
"loss": 0.5564,
|
3408 |
+
"step": 5500
|
3409 |
+
},
|
3410 |
+
{
|
3411 |
+
"epoch": 69.62,
|
3412 |
+
"eval_cer": 0.19773618906387852,
|
3413 |
+
"eval_loss": 0.9461079239845276,
|
3414 |
+
"eval_runtime": 45.3275,
|
3415 |
+
"eval_samples_per_second": 10.612,
|
3416 |
+
"eval_steps_per_second": 1.346,
|
3417 |
+
"eval_wer": 0.5148362892223738,
|
3418 |
+
"step": 5500
|
3419 |
+
},
|
3420 |
+
{
|
3421 |
+
"epoch": 69.75,
|
3422 |
+
"learning_rate": 7.38e-06,
|
3423 |
+
"loss": 0.525,
|
3424 |
+
"step": 5510
|
3425 |
+
},
|
3426 |
+
{
|
3427 |
+
"epoch": 69.87,
|
3428 |
+
"learning_rate": 7.229999999999999e-06,
|
3429 |
+
"loss": 0.5232,
|
3430 |
+
"step": 5520
|
3431 |
+
},
|
3432 |
+
{
|
3433 |
+
"epoch": 70.0,
|
3434 |
+
"learning_rate": 7.079999999999999e-06,
|
3435 |
+
"loss": 0.5318,
|
3436 |
+
"step": 5530
|
3437 |
+
},
|
3438 |
+
{
|
3439 |
+
"epoch": 70.13,
|
3440 |
+
"learning_rate": 6.929999999999999e-06,
|
3441 |
+
"loss": 0.562,
|
3442 |
+
"step": 5540
|
3443 |
+
},
|
3444 |
+
{
|
3445 |
+
"epoch": 70.25,
|
3446 |
+
"learning_rate": 6.779999999999999e-06,
|
3447 |
+
"loss": 0.494,
|
3448 |
+
"step": 5550
|
3449 |
+
},
|
3450 |
+
{
|
3451 |
+
"epoch": 70.38,
|
3452 |
+
"learning_rate": 6.63e-06,
|
3453 |
+
"loss": 0.5314,
|
3454 |
+
"step": 5560
|
3455 |
+
},
|
3456 |
+
{
|
3457 |
+
"epoch": 70.51,
|
3458 |
+
"learning_rate": 6.48e-06,
|
3459 |
+
"loss": 0.5332,
|
3460 |
+
"step": 5570
|
3461 |
+
},
|
3462 |
+
{
|
3463 |
+
"epoch": 70.63,
|
3464 |
+
"learning_rate": 6.3299999999999995e-06,
|
3465 |
+
"loss": 0.552,
|
3466 |
+
"step": 5580
|
3467 |
+
},
|
3468 |
+
{
|
3469 |
+
"epoch": 70.76,
|
3470 |
+
"learning_rate": 6.179999999999999e-06,
|
3471 |
+
"loss": 0.5538,
|
3472 |
+
"step": 5590
|
3473 |
+
},
|
3474 |
+
{
|
3475 |
+
"epoch": 70.89,
|
3476 |
+
"learning_rate": 6.029999999999999e-06,
|
3477 |
+
"loss": 0.5507,
|
3478 |
+
"step": 5600
|
3479 |
+
},
|
3480 |
+
{
|
3481 |
+
"epoch": 71.01,
|
3482 |
+
"learning_rate": 5.88e-06,
|
3483 |
+
"loss": 0.5207,
|
3484 |
+
"step": 5610
|
3485 |
+
},
|
3486 |
+
{
|
3487 |
+
"epoch": 71.14,
|
3488 |
+
"learning_rate": 5.729999999999999e-06,
|
3489 |
+
"loss": 0.5613,
|
3490 |
+
"step": 5620
|
3491 |
+
},
|
3492 |
+
{
|
3493 |
+
"epoch": 71.27,
|
3494 |
+
"learning_rate": 5.579999999999999e-06,
|
3495 |
+
"loss": 0.5263,
|
3496 |
+
"step": 5630
|
3497 |
+
},
|
3498 |
+
{
|
3499 |
+
"epoch": 71.39,
|
3500 |
+
"learning_rate": 5.43e-06,
|
3501 |
+
"loss": 0.5138,
|
3502 |
+
"step": 5640
|
3503 |
+
},
|
3504 |
+
{
|
3505 |
+
"epoch": 71.52,
|
3506 |
+
"learning_rate": 5.28e-06,
|
3507 |
+
"loss": 0.5268,
|
3508 |
+
"step": 5650
|
3509 |
+
},
|
3510 |
+
{
|
3511 |
+
"epoch": 71.65,
|
3512 |
+
"learning_rate": 5.13e-06,
|
3513 |
+
"loss": 0.5285,
|
3514 |
+
"step": 5660
|
3515 |
+
},
|
3516 |
+
{
|
3517 |
+
"epoch": 71.77,
|
3518 |
+
"learning_rate": 4.98e-06,
|
3519 |
+
"loss": 0.539,
|
3520 |
+
"step": 5670
|
3521 |
+
},
|
3522 |
+
{
|
3523 |
+
"epoch": 71.9,
|
3524 |
+
"learning_rate": 4.8299999999999995e-06,
|
3525 |
+
"loss": 0.5518,
|
3526 |
+
"step": 5680
|
3527 |
+
},
|
3528 |
+
{
|
3529 |
+
"epoch": 72.03,
|
3530 |
+
"learning_rate": 4.679999999999999e-06,
|
3531 |
+
"loss": 0.5392,
|
3532 |
+
"step": 5690
|
3533 |
+
},
|
3534 |
+
{
|
3535 |
+
"epoch": 72.15,
|
3536 |
+
"learning_rate": 4.53e-06,
|
3537 |
+
"loss": 0.5341,
|
3538 |
+
"step": 5700
|
3539 |
+
},
|
3540 |
+
{
|
3541 |
+
"epoch": 72.28,
|
3542 |
+
"learning_rate": 4.3799999999999996e-06,
|
3543 |
+
"loss": 0.528,
|
3544 |
+
"step": 5710
|
3545 |
+
},
|
3546 |
+
{
|
3547 |
+
"epoch": 72.41,
|
3548 |
+
"learning_rate": 4.229999999999999e-06,
|
3549 |
+
"loss": 0.5285,
|
3550 |
+
"step": 5720
|
3551 |
+
},
|
3552 |
+
{
|
3553 |
+
"epoch": 72.53,
|
3554 |
+
"learning_rate": 4.079999999999999e-06,
|
3555 |
+
"loss": 0.5291,
|
3556 |
+
"step": 5730
|
3557 |
+
},
|
3558 |
+
{
|
3559 |
+
"epoch": 72.66,
|
3560 |
+
"learning_rate": 3.93e-06,
|
3561 |
+
"loss": 0.56,
|
3562 |
+
"step": 5740
|
3563 |
+
},
|
3564 |
+
{
|
3565 |
+
"epoch": 72.78,
|
3566 |
+
"learning_rate": 3.78e-06,
|
3567 |
+
"loss": 0.5638,
|
3568 |
+
"step": 5750
|
3569 |
+
},
|
3570 |
+
{
|
3571 |
+
"epoch": 72.91,
|
3572 |
+
"learning_rate": 3.6299999999999995e-06,
|
3573 |
+
"loss": 0.5111,
|
3574 |
+
"step": 5760
|
3575 |
+
},
|
3576 |
+
{
|
3577 |
+
"epoch": 73.04,
|
3578 |
+
"learning_rate": 3.4799999999999993e-06,
|
3579 |
+
"loss": 0.5239,
|
3580 |
+
"step": 5770
|
3581 |
+
},
|
3582 |
+
{
|
3583 |
+
"epoch": 73.16,
|
3584 |
+
"learning_rate": 3.33e-06,
|
3585 |
+
"loss": 0.5386,
|
3586 |
+
"step": 5780
|
3587 |
+
},
|
3588 |
+
{
|
3589 |
+
"epoch": 73.29,
|
3590 |
+
"learning_rate": 3.1799999999999996e-06,
|
3591 |
+
"loss": 0.525,
|
3592 |
+
"step": 5790
|
3593 |
+
},
|
3594 |
+
{
|
3595 |
+
"epoch": 73.42,
|
3596 |
+
"learning_rate": 3.03e-06,
|
3597 |
+
"loss": 0.5051,
|
3598 |
+
"step": 5800
|
3599 |
+
},
|
3600 |
+
{
|
3601 |
+
"epoch": 73.54,
|
3602 |
+
"learning_rate": 2.8799999999999995e-06,
|
3603 |
+
"loss": 0.5119,
|
3604 |
+
"step": 5810
|
3605 |
+
},
|
3606 |
+
{
|
3607 |
+
"epoch": 73.67,
|
3608 |
+
"learning_rate": 2.7299999999999997e-06,
|
3609 |
+
"loss": 0.5209,
|
3610 |
+
"step": 5820
|
3611 |
+
},
|
3612 |
+
{
|
3613 |
+
"epoch": 73.8,
|
3614 |
+
"learning_rate": 2.58e-06,
|
3615 |
+
"loss": 0.5659,
|
3616 |
+
"step": 5830
|
3617 |
+
},
|
3618 |
+
{
|
3619 |
+
"epoch": 73.92,
|
3620 |
+
"learning_rate": 2.4299999999999996e-06,
|
3621 |
+
"loss": 0.5178,
|
3622 |
+
"step": 5840
|
3623 |
+
},
|
3624 |
+
{
|
3625 |
+
"epoch": 74.05,
|
3626 |
+
"learning_rate": 2.2799999999999998e-06,
|
3627 |
+
"loss": 0.5523,
|
3628 |
+
"step": 5850
|
3629 |
+
},
|
3630 |
+
{
|
3631 |
+
"epoch": 74.18,
|
3632 |
+
"learning_rate": 2.13e-06,
|
3633 |
+
"loss": 0.5048,
|
3634 |
+
"step": 5860
|
3635 |
+
},
|
3636 |
+
{
|
3637 |
+
"epoch": 74.3,
|
3638 |
+
"learning_rate": 1.9799999999999997e-06,
|
3639 |
+
"loss": 0.5109,
|
3640 |
+
"step": 5870
|
3641 |
+
},
|
3642 |
+
{
|
3643 |
+
"epoch": 74.43,
|
3644 |
+
"learning_rate": 1.83e-06,
|
3645 |
+
"loss": 0.5092,
|
3646 |
+
"step": 5880
|
3647 |
+
},
|
3648 |
+
{
|
3649 |
+
"epoch": 74.56,
|
3650 |
+
"learning_rate": 1.6799999999999998e-06,
|
3651 |
+
"loss": 0.5439,
|
3652 |
+
"step": 5890
|
3653 |
+
},
|
3654 |
+
{
|
3655 |
+
"epoch": 74.68,
|
3656 |
+
"learning_rate": 1.53e-06,
|
3657 |
+
"loss": 0.5501,
|
3658 |
+
"step": 5900
|
3659 |
+
},
|
3660 |
+
{
|
3661 |
+
"epoch": 74.81,
|
3662 |
+
"learning_rate": 1.38e-06,
|
3663 |
+
"loss": 0.5628,
|
3664 |
+
"step": 5910
|
3665 |
+
},
|
3666 |
+
{
|
3667 |
+
"epoch": 74.94,
|
3668 |
+
"learning_rate": 1.23e-06,
|
3669 |
+
"loss": 0.5097,
|
3670 |
+
"step": 5920
|
3671 |
+
},
|
3672 |
+
{
|
3673 |
+
"epoch": 75.06,
|
3674 |
+
"learning_rate": 1.0799999999999998e-06,
|
3675 |
+
"loss": 0.5363,
|
3676 |
+
"step": 5930
|
3677 |
+
},
|
3678 |
+
{
|
3679 |
+
"epoch": 75.19,
|
3680 |
+
"learning_rate": 9.299999999999999e-07,
|
3681 |
+
"loss": 0.5304,
|
3682 |
+
"step": 5940
|
3683 |
+
},
|
3684 |
+
{
|
3685 |
+
"epoch": 75.32,
|
3686 |
+
"learning_rate": 7.799999999999999e-07,
|
3687 |
+
"loss": 0.5358,
|
3688 |
+
"step": 5950
|
3689 |
+
},
|
3690 |
+
{
|
3691 |
+
"epoch": 75.44,
|
3692 |
+
"learning_rate": 6.299999999999999e-07,
|
3693 |
+
"loss": 0.5262,
|
3694 |
+
"step": 5960
|
3695 |
+
},
|
3696 |
+
{
|
3697 |
+
"epoch": 75.57,
|
3698 |
+
"learning_rate": 4.8e-07,
|
3699 |
+
"loss": 0.5258,
|
3700 |
+
"step": 5970
|
3701 |
+
},
|
3702 |
+
{
|
3703 |
+
"epoch": 75.7,
|
3704 |
+
"learning_rate": 3.3e-07,
|
3705 |
+
"loss": 0.4952,
|
3706 |
+
"step": 5980
|
3707 |
+
},
|
3708 |
+
{
|
3709 |
+
"epoch": 75.82,
|
3710 |
+
"learning_rate": 1.7999999999999997e-07,
|
3711 |
+
"loss": 0.5285,
|
3712 |
+
"step": 5990
|
3713 |
+
},
|
3714 |
+
{
|
3715 |
+
"epoch": 75.95,
|
3716 |
+
"learning_rate": 3e-08,
|
3717 |
+
"loss": 0.5252,
|
3718 |
+
"step": 6000
|
3719 |
+
},
|
3720 |
+
{
|
3721 |
+
"epoch": 75.95,
|
3722 |
+
"eval_cer": 0.19692902596061795,
|
3723 |
+
"eval_loss": 0.9505288004875183,
|
3724 |
+
"eval_runtime": 45.9888,
|
3725 |
+
"eval_samples_per_second": 10.459,
|
3726 |
+
"eval_steps_per_second": 0.674,
|
3727 |
+
"eval_wer": 0.5117667121418826,
|
3728 |
+
"step": 6000
|
3729 |
+
},
|
3730 |
+
{
|
3731 |
+
"epoch": 75.95,
|
3732 |
+
"step": 6000,
|
3733 |
+
"total_flos": 6.910110276723645e+19,
|
3734 |
+
"train_loss": 0.044292491674423215,
|
3735 |
+
"train_runtime": 2233.4842,
|
3736 |
+
"train_samples_per_second": 85.964,
|
3737 |
+
"train_steps_per_second": 2.686
|
3738 |
+
}
|
3739 |
+
],
|
3740 |
+
"max_steps": 6000,
|
3741 |
+
"num_train_epochs": 76,
|
3742 |
+
"total_flos": 6.910110276723645e+19,
|
3743 |
+
"trial_name": null,
|
3744 |
+
"trial_params": null
|
3745 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c320c55ba9124e0a7d45da133173ad9a74af1e9959ad8e0d0bd14767c2fba239
|
3 |
+
size 3451
|
vocab.json
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"[PAD]": 114,
|
3 |
+
"[UNK]": 113,
|
4 |
+
"_": 1,
|
5 |
+
"`": 2,
|
6 |
+
"a": 3,
|
7 |
+
"b": 4,
|
8 |
+
"c": 5,
|
9 |
+
"d": 6,
|
10 |
+
"e": 7,
|
11 |
+
"f": 8,
|
12 |
+
"g": 9,
|
13 |
+
"h": 10,
|
14 |
+
"i": 11,
|
15 |
+
"j": 12,
|
16 |
+
"k": 13,
|
17 |
+
"l": 14,
|
18 |
+
"m": 15,
|
19 |
+
"n": 16,
|
20 |
+
"o": 17,
|
21 |
+
"p": 18,
|
22 |
+
"q": 19,
|
23 |
+
"r": 20,
|
24 |
+
"s": 21,
|
25 |
+
"t": 22,
|
26 |
+
"u": 23,
|
27 |
+
"v": 24,
|
28 |
+
"w": 25,
|
29 |
+
"x": 26,
|
30 |
+
"y": 27,
|
31 |
+
"z": 28,
|
32 |
+
"|": 0,
|
33 |
+
"¥": 29,
|
34 |
+
"°": 30,
|
35 |
+
"½": 31,
|
36 |
+
"¾": 32,
|
37 |
+
"é": 33,
|
38 |
+
"í": 34,
|
39 |
+
"،": 35,
|
40 |
+
"؛": 36,
|
41 |
+
"؟": 37,
|
42 |
+
"ء": 38,
|
43 |
+
"آ": 39,
|
44 |
+
"أ": 40,
|
45 |
+
"ؤ": 41,
|
46 |
+
"ئ": 42,
|
47 |
+
"ا": 43,
|
48 |
+
"ب": 44,
|
49 |
+
"ت": 45,
|
50 |
+
"ث": 46,
|
51 |
+
"ج": 47,
|
52 |
+
"ح": 48,
|
53 |
+
"خ": 49,
|
54 |
+
"د": 50,
|
55 |
+
"ذ": 51,
|
56 |
+
"ر": 52,
|
57 |
+
"ز": 53,
|
58 |
+
"س": 54,
|
59 |
+
"ش": 55,
|
60 |
+
"ص": 56,
|
61 |
+
"ض": 57,
|
62 |
+
"ط": 58,
|
63 |
+
"ظ": 59,
|
64 |
+
"ع": 60,
|
65 |
+
"غ": 61,
|
66 |
+
"ـ": 62,
|
67 |
+
"ف": 63,
|
68 |
+
"ق": 64,
|
69 |
+
"ك": 65,
|
70 |
+
"ل": 66,
|
71 |
+
"م": 67,
|
72 |
+
"ن": 68,
|
73 |
+
"ه": 69,
|
74 |
+
"و": 70,
|
75 |
+
"ى": 71,
|
76 |
+
"ي": 72,
|
77 |
+
"ً": 73,
|
78 |
+
"ٌ": 74,
|
79 |
+
"َ": 75,
|
80 |
+
"ُ": 76,
|
81 |
+
"ّ": 77,
|
82 |
+
"٪": 78,
|
83 |
+
"ټ": 79,
|
84 |
+
"پ": 80,
|
85 |
+
"ځ": 81,
|
86 |
+
"څ": 82,
|
87 |
+
"چ": 83,
|
88 |
+
"ډ": 84,
|
89 |
+
"ړ": 85,
|
90 |
+
"ږ": 86,
|
91 |
+
"ژ": 87,
|
92 |
+
"ښ": 88,
|
93 |
+
"ک": 89,
|
94 |
+
"ګ": 90,
|
95 |
+
"گ": 91,
|
96 |
+
"ڼ": 92,
|
97 |
+
"ھ": 93,
|
98 |
+
"ی": 94,
|
99 |
+
"ۍ": 95,
|
100 |
+
"ې": 96,
|
101 |
+
"ے": 97,
|
102 |
+
"۔": 98,
|
103 |
+
"۰": 99,
|
104 |
+
"۱": 100,
|
105 |
+
"۲": 101,
|
106 |
+
"۳": 102,
|
107 |
+
"۴": 103,
|
108 |
+
"۵": 104,
|
109 |
+
"۶": 105,
|
110 |
+
"۷": 106,
|
111 |
+
"۸": 107,
|
112 |
+
"۹": 108,
|
113 |
+
"": 109,
|
114 |
+
"": 110,
|
115 |
+
"–": 111,
|
116 |
+
"—": 112
|
117 |
+
}
|