--- library_name: transformers language: - hi license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - ifc0nfig/whisper_fine_tune_v2 metrics: - wer model-index: - name: Whisper Small Hi - Vyapar results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Vyapar Calling Data type: ifc0nfig/whisper_fine_tune_v2 args: 'split: test' metrics: - name: Wer type: wer value: 62.925851703406806 --- # Whisper Small Hi - Vyapar This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Vyapar Calling Data dataset. It achieves the following results on the evaluation set: - Loss: 2.0664 - Wer: 62.9259 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.1183 | 8.7753 | 1000 | 1.5163 | 56.7134 | | 0.0037 | 17.5463 | 2000 | 1.8823 | 54.8297 | | 0.0003 | 26.3172 | 3000 | 2.0341 | 54.9499 | | 0.0002 | 35.0881 | 4000 | 2.0664 | 62.9259 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu118 - Datasets 3.2.0 - Tokenizers 0.21.0