File size: 2,009 Bytes
4c38aa5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
library_name: transformers
language:
- ha
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- google/fleurs
metrics:
- wer
model-index:
- name: FLEURS Finetuned Whisper Small - Ibrahim Ibrahim
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Google FLEURS
type: google/fleurs
config: ha_ng
split: test+validation[:79]
args: ha_ng
metrics:
- name: Wer
type: wer
value: 35.774552818089774
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# FLEURS Finetuned Whisper Small - Ibrahim Ibrahim
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Google FLEURS dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7191
- Wer Ortho: 36.6759
- Wer: 35.7746
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 500
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:------:|:----:|:---------------:|:---------:|:-------:|
| 0.1213 | 3.2680 | 500 | 0.7191 | 36.6759 | 35.7746 |
### Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
|