File size: 7,903 Bytes
860565c c5b36c5 860565c c5b36c5 860565c c5b36c5 860565c c5b36c5 860565c c5b36c5 860565c c5b36c5 860565c c5b36c5 860565c c5b36c5 860565c c5b36c5 860565c c5b36c5 860565c c5b36c5 860565c c5b36c5 860565c c5b36c5 860565c c5b36c5 860565c c5b36c5 860565c c5b36c5 860565c c5b36c5 860565c c5b36c5 860565c c5b36c5 860565c c5b36c5 860565c c5b36c5 860565c c5b36c5 860565c c5b36c5 860565c c5b36c5 860565c c5b36c5 860565c c5b36c5 860565c c5b36c5 860565c c5b36c5 860565c c5b36c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
---
license: apache-2.0
language:
- en
pipeline_tag: text-generation
library_name: transformers
---
# Granite Uncertainty 3.0 8b
## Model Summary
**Granite Uncertainty 3.0 8b** is a LoRA adapter for [ibm-granite/granite-3.0-8b-instruct](https://huggingface.co/ibm-granite/granite-3.0-8b-instruct),
adding the capability to provide calibrated certainty scores when answering questions when prompted, in addition to retaining the full abilities of the [ibm-granite/granite-3.0-8b-instruct](https://huggingface.co/ibm-granite/granite-3.0-8b-instruct) model.
- **Developer:** IBM Research
- **Model type:** LoRA adapter for [ibm-granite/granite-3.0-8b-instruct](https://huggingface.co/ibm-granite/granite-3.0-8b-instruct)
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
### Model Sources
<!-- Provide the basic links for the model. -->
- **Paper:** The **Granite Uncertainty 3.0 8b** model is finetuned to provide certainty scores mimicking the output of a calibrator trained via the method in [[Shen et al. ICML 2024] Thermometer: Towards Universal Calibration for Large Language Models](https://arxiv.org/abs/2403.08819)
## Usage
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Intended use
**Granite Uncertainty 3.0 8b** is lightly tuned so that its behavior closely mimics that of [ibm-granite/granite-3.0-8b-instruct](https://huggingface.co/ibm-granite/granite-3.0-8b-instruct),
with the added ability to generate certainty scores for answers to questions when prompted.
**Certainty score definition** The model will respond with a certainty percentage, quantized to 10 possible values (i.e. 5%, 15%, 25%,...95%).
This percentage is *calibrated* in the following sense: given a set of answers assigned a certainty score of X%, approximately X% of these answers should be correct. See the eval experiment below for out-of-distribution verification of this behavior.
**Important note** Certainty is inherently an intrinsic property of a model and its abilitities. **Granite Uncertainty 3.0 8b** is not intended to predict the certainty of responses generated by any other model.
Answering a question and obtaining a certainty score proceeds as follows.
1. Prompt the model with a system and/or user prompt.
2. Use the model to generate a response as normal (via the `assistant` role).
3. Prompt the model to generate a certainty score by generating in the `certainty` role (by appending `<|start_of_role|>certainty<|end_of_role|>` and generating).
4. The model will respond with a certainty percentage, quantized with steps of 10% (i.e. 5%, 15%, 25%,...95%).
When not given the certainty generation prompt `<|start_of_role|>certainty<|end_of_role|>`, the model's behavior should mimic that of the base model [ibm-granite/granite-3.0-8b-instruct](https://huggingface.co/ibm-granite/granite-3.0-8b-instruct).
### Quickstart Example
The following code describes how to use the Granite Uncertainty model to answer questions and obtain intrinsic calibrated certainty scores. Note that a generic system prompt is included, this is not necessary and can be modified as needed.
```python
import torch,os
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel, PeftConfig
token = os.getenv("HF_MISTRAL_TOKEN")
BASE_NAME = "ibm-granite/granite-3.0-8b-instruct"
LORA_NAME = "ibm-granite/granite-uncertainty-3.0-8b-lora"
device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load model
token = os.getenv("HF_MISTRAL_TOKEN")
tokenizer = AutoTokenizer.from_pretrained(BASE_NAME,padding_side='left',trust_remote_code=True, token=token)
model_base = AutoModelForCausalLM.from_pretrained(BASE_NAME,device_map="auto")
model_UQ = PeftModel.from_pretrained(model_base, LORA_NAME)
system_prompt = "You are an AI language model developed by IBM Research. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior." #NOTE: this is generic, it can be changed
question = "What is IBM?"
print("Question:" + question)
question_chat = [
{
"role": "system",
"content": system_prompt
},
{
"role": "user",
"content": question
},
]
# Generate answer
input_text = tokenizer.apply_chat_template(question_chat,tokenize=False,add_generation_prompt=True)
inputs = tokenizer(input_text, return_tensors="pt")
output = model_UQ.generate(inputs["input_ids"].to(device), attention_mask=inputs["attention_mask"].to(device), max_new_tokens=80)
output_text = tokenizer.decode(output[0])
answer = output_text.split("assistant<|end_of_role|>")[1]
print("Answer: " + answer)
# Generate certainty score
uq_generation_prompt = "<|start_of_role|>certainty<|end_of_role|>"
uq_chat = [
{
"role": "system",
"content": system_prompt
},
{
"role": "user",
"content": question
},
{
"role": "assistant",
"content": answer
},
]
uq_text = tokenizer.apply_chat_template(uq_chat,tokenize=False) + uq_generation_prompt
inputs = tokenizer(uq_text, return_tensors="pt")
output = model_UQ.generate(inputs["input_ids"].to(device), attention_mask=inputs["attention_mask"].to(device), max_new_tokens=1)
output_text = tokenizer.decode(output[0])
uq_score = int(output_text[-1])
print("Certainty: " + str(5 + uq_score * 10) + "%")
```
## Training Details
The **Granite Uncertainty 3.0 8b** model is a LoRA adapter finetuned to provide certainty scores mimicking the output of a calibrator trained via the method in [[Shen et al. ICML 2024] Thermometer: Towards Universal Calibration for Large Language Models](https://arxiv.org/abs/2403.08819).
### Training Data
The following datasets were used for calibration and/or finetuning.
* [BigBench](https://huggingface.co/datasets/tasksource/bigbench)
* [MRQA](https://huggingface.co/datasets/mrqa-workshop/mrqa)
* [newsqa](https://huggingface.co/datasets/lucadiliello/newsqa)
* [trivia_qa](https://huggingface.co/datasets/mandarjoshi/trivia_qa)
* [search_qa](https://huggingface.co/datasets/lucadiliello/searchqa)
* [openbookqa](https://huggingface.co/datasets/allenai/openbookqa)
* [web_questions](https://huggingface.co/datasets/Stanford/web_questions)
* [smiles-qa](https://huggingface.co/datasets/alxfgh/ChEMBL_Drug_Instruction_Tuning)
* [orca-math](https://huggingface.co/datasets/microsoft/orca-math-word-problems-200k)
* [ARC-Easy](https://huggingface.co/datasets/allenai/ai2_arc)
* [commonsense_qa](https://huggingface.co/datasets/tau/commonsense_qa)
* [social_i_qa](https://huggingface.co/datasets/allenai/social_i_qa)
* [super_glue](https://huggingface.co/datasets/aps/super_glue)
* [figqa](https://huggingface.co/datasets/nightingal3/fig-qa)
* [riddle_sense](https://huggingface.co/datasets/INK-USC/riddle_sense)
* [ag_news](https://huggingface.co/datasets/fancyzhx/ag_news)
* [medmcqa](https://huggingface.co/datasets/openlifescienceai/medmcqa)
* [dream](https://huggingface.co/datasets/dataset-org/dream)
* [codah](https://huggingface.co/datasets/jaredfern/codah)
* [piqa](https://huggingface.co/datasets/ybisk/piqa)
## Evaluation
The model was evaluated on the [MMLU](https://huggingface.co/datasets/cais/mmlu) datasets (not used in training). Shown are the [Expected Calibration Error (ECE)](https://towardsdatascience.com/expected-calibration-error-ece-a-step-by-step-visual-explanation-with-python-code-c3e9aa12937d) for each task, for the base model (Granite-3.0-8b-instruct) and Granite-Uncertainty-3.0-8b.
The average ECE across tasks is 0.06 (out of 1). Note that this is smaller than the gap between the quantized certainty outputs (10% quantization steps).
<!-- This section describes the evaluation protocols and provides the results. -->
## Model Card Authors
Kristjan Greenewald |