Delete configs/config_full_tile.yaml (#10)
Browse files- Delete configs/config_full_tile.yaml (73ad6825a5aa474ebf3da275f691ad190229808f)
Co-authored-by: Tamara Govindasamy <[email protected]>
- configs/config_full_tile.yaml +0 -176
configs/config_full_tile.yaml
DELETED
@@ -1,176 +0,0 @@
|
|
1 |
-
# lightning.pytorch==2.1.1
|
2 |
-
seed_everything: 0
|
3 |
-
|
4 |
-
### Trainer configuration
|
5 |
-
trainer:
|
6 |
-
accelerator: auto
|
7 |
-
strategy: auto
|
8 |
-
devices: auto
|
9 |
-
num_nodes: 1
|
10 |
-
# precision: 16-mixed
|
11 |
-
logger:
|
12 |
-
# You can swtich to TensorBoard for logging by uncommenting the below line and commenting out the procedding line
|
13 |
-
#class_path: TensorBoardLogger
|
14 |
-
class_path: lightning.pytorch.loggers.csv_logs.CSVLogger
|
15 |
-
init_args:
|
16 |
-
save_dir: ./experiments
|
17 |
-
name: fine_tune_suhi
|
18 |
-
callbacks:
|
19 |
-
- class_path: RichProgressBar
|
20 |
-
- class_path: LearningRateMonitor
|
21 |
-
init_args:
|
22 |
-
logging_interval: epoch
|
23 |
-
- class_path: EarlyStopping
|
24 |
-
init_args:
|
25 |
-
monitor: val/loss
|
26 |
-
patience: 600
|
27 |
-
max_epochs: 600
|
28 |
-
check_val_every_n_epoch: 1
|
29 |
-
log_every_n_steps: 10
|
30 |
-
enable_checkpointing: true
|
31 |
-
default_root_dir: ./experiments
|
32 |
-
out_dtype: float32
|
33 |
-
|
34 |
-
### Data configuration
|
35 |
-
data:
|
36 |
-
class_path: GenericNonGeoPixelwiseRegressionDataModule
|
37 |
-
init_args:
|
38 |
-
batch_size: 1
|
39 |
-
num_workers: 8
|
40 |
-
train_transform:
|
41 |
-
- class_path: albumentations.HorizontalFlip
|
42 |
-
init_args:
|
43 |
-
p: 0.5
|
44 |
-
- class_path: albumentations.Rotate
|
45 |
-
init_args:
|
46 |
-
limit: 30
|
47 |
-
border_mode: 0 # cv2.BORDER_CONSTANT
|
48 |
-
value: 0
|
49 |
-
mask_value: 1
|
50 |
-
p: 0.5
|
51 |
-
- class_path: ToTensorV2
|
52 |
-
# Specify all bands which are in the input data.
|
53 |
-
dataset_bands:
|
54 |
-
# 6 HLS bands
|
55 |
-
- BLUE
|
56 |
-
- GREEN
|
57 |
-
- RED
|
58 |
-
- NIR_NARROW
|
59 |
-
- SWIR_1
|
60 |
-
- SWIR_2
|
61 |
-
# ERA5-Land t2m_spatial_avg
|
62 |
-
- 7
|
63 |
-
# ERA5-Land t2m_sunrise_avg
|
64 |
-
- 8
|
65 |
-
# ERA5-Land t2m_midnight_avg
|
66 |
-
- 9
|
67 |
-
# ERA5-Land t2m_delta_avg
|
68 |
-
- 10
|
69 |
-
# cos_tod
|
70 |
-
- 11
|
71 |
-
# sin_tod
|
72 |
-
- 12
|
73 |
-
# cos_doy
|
74 |
-
- 13
|
75 |
-
# sin_doy
|
76 |
-
- 14
|
77 |
-
# Specify the bands which are used from the input data.
|
78 |
-
# Bands 8 - 14 were discarded in the final model
|
79 |
-
output_bands:
|
80 |
-
- BLUE
|
81 |
-
- GREEN
|
82 |
-
- RED
|
83 |
-
- NIR_NARROW
|
84 |
-
- SWIR_1
|
85 |
-
- SWIR_2
|
86 |
-
- 7
|
87 |
-
rgb_indices:
|
88 |
-
- 2
|
89 |
-
- 1
|
90 |
-
- 0
|
91 |
-
# Directory roots to training, validation and test datasplits:
|
92 |
-
train_data_root: train/inputs
|
93 |
-
train_label_data_root: train/targets
|
94 |
-
val_data_root: val/inputs
|
95 |
-
val_label_data_root: val/targets
|
96 |
-
test_data_root: test/inputs
|
97 |
-
test_label_data_root: test/targets
|
98 |
-
img_grep: "*.inputs.tif"
|
99 |
-
label_grep: "*.lst.tif"
|
100 |
-
# Nodata value in the input data
|
101 |
-
no_data_replace: 0
|
102 |
-
# Nodata value in label (target) data
|
103 |
-
no_label_replace: -9999
|
104 |
-
# Mean value of the training dataset per band
|
105 |
-
means:
|
106 |
-
- 702.4754028320312
|
107 |
-
- 1023.23291015625
|
108 |
-
- 1118.8924560546875
|
109 |
-
- 2440.750732421875
|
110 |
-
- 2052.705810546875
|
111 |
-
- 1514.15087890625
|
112 |
-
- 21.031919479370117
|
113 |
-
# Standard deviation of the training dataset per band
|
114 |
-
stds:
|
115 |
-
- 554.8255615234375
|
116 |
-
- 613.5565185546875
|
117 |
-
- 745.929443359375
|
118 |
-
- 715.0111083984375
|
119 |
-
- 761.47607421875
|
120 |
-
- 734.991943359375
|
121 |
-
- 8.66781997680664
|
122 |
-
|
123 |
-
### Model configuration
|
124 |
-
model:
|
125 |
-
class_path: terratorch.tasks.PixelwiseRegressionTask
|
126 |
-
init_args:
|
127 |
-
model_args:
|
128 |
-
decoder: UperNetDecoder
|
129 |
-
pretrained: false
|
130 |
-
backbone: prithvi_swin_L
|
131 |
-
img_size: 224
|
132 |
-
backbone_drop_path_rate: 0.3
|
133 |
-
decoder_channels: 256
|
134 |
-
in_channels: 7
|
135 |
-
bands:
|
136 |
-
- BLUE
|
137 |
-
- GREEN
|
138 |
-
- RED
|
139 |
-
- NIR_NARROW
|
140 |
-
- SWIR_1
|
141 |
-
- SWIR_2
|
142 |
-
- 7
|
143 |
-
num_frames: 1
|
144 |
-
loss: rmse
|
145 |
-
aux_heads:
|
146 |
-
- name: aux_head
|
147 |
-
decoder: IdentityDecoder
|
148 |
-
decoder_args:
|
149 |
-
head_dropout: 0.5
|
150 |
-
head_channel_list:
|
151 |
-
- 1
|
152 |
-
head_final_act: torch.nn.LazyLinear
|
153 |
-
aux_loss:
|
154 |
-
aux_head: 0.4
|
155 |
-
ignore_index: -9999
|
156 |
-
freeze_backbone: false
|
157 |
-
freeze_decoder: false
|
158 |
-
model_factory: PrithviModelFactory
|
159 |
-
# This block is commented out when inferencing on full tiles.
|
160 |
-
# It is possible to inference on full tiles with this paramter on, the benefit is that the compute requirement is smaller.
|
161 |
-
# However, using this to inference on a full tile will introduce artefacting/"patchy" predictions.
|
162 |
-
# tiled_inference_parameters:
|
163 |
-
# h_crop: 224
|
164 |
-
# h_stride: 224
|
165 |
-
# w_crop: 224
|
166 |
-
# w_stride: 224
|
167 |
-
# average_patches: true
|
168 |
-
optimizer:
|
169 |
-
class_path: torch.optim.AdamW
|
170 |
-
init_args:
|
171 |
-
lr: 0.0001
|
172 |
-
weight_decay: 0.05
|
173 |
-
lr_scheduler:
|
174 |
-
class_path: ReduceLROnPlateau
|
175 |
-
init_args:
|
176 |
-
monitor: val/loss
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|