mayank-mishra
commited on
update examples
Browse files
README.md
CHANGED
@@ -253,32 +253,23 @@ This is a simple example of how to use **Granite-3B-Code-Base** model.
|
|
253 |
```python
|
254 |
import torch
|
255 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
256 |
-
|
257 |
device = "cuda" # or "cpu"
|
258 |
model_path = "ibm-granite/granite-3b-code-base"
|
259 |
-
|
260 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
261 |
-
|
262 |
# drop device_map if running on CPU
|
263 |
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
|
264 |
model.eval()
|
265 |
-
|
266 |
# change input text as desired
|
267 |
input_text = "def generate():"
|
268 |
-
|
269 |
# tokenize the text
|
270 |
input_tokens = tokenizer(input_text, return_tensors="pt")
|
271 |
-
|
272 |
# transfer tokenized inputs to the device
|
273 |
for i in input_tokens:
|
274 |
input_tokens[i] = input_tokens[i].to(device)
|
275 |
-
|
276 |
# generate output tokens
|
277 |
output = model.generate(**input_tokens)
|
278 |
-
|
279 |
# decode output tokens into text
|
280 |
output = tokenizer.batch_decode(output)
|
281 |
-
|
282 |
# loop over the batch to print, in this example the batch size is 1
|
283 |
for i in output:
|
284 |
print(i)
|
|
|
253 |
```python
|
254 |
import torch
|
255 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
256 |
device = "cuda" # or "cpu"
|
257 |
model_path = "ibm-granite/granite-3b-code-base"
|
|
|
258 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
|
|
259 |
# drop device_map if running on CPU
|
260 |
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
|
261 |
model.eval()
|
|
|
262 |
# change input text as desired
|
263 |
input_text = "def generate():"
|
|
|
264 |
# tokenize the text
|
265 |
input_tokens = tokenizer(input_text, return_tensors="pt")
|
|
|
266 |
# transfer tokenized inputs to the device
|
267 |
for i in input_tokens:
|
268 |
input_tokens[i] = input_tokens[i].to(device)
|
|
|
269 |
# generate output tokens
|
270 |
output = model.generate(**input_tokens)
|
|
|
271 |
# decode output tokens into text
|
272 |
output = tokenizer.batch_decode(output)
|
|
|
273 |
# loop over the batch to print, in this example the batch size is 1
|
274 |
for i in output:
|
275 |
print(i)
|