|
from ultralyticsplus import YOLO |
|
from typing import List, Dict, Any |
|
from sahi import ObjectPrediction |
|
|
|
|
|
DEFAULT_CONFIG = {'conf': 0.25, 'iou': 0.45, 'agnostic_nms': False, 'max_det': 1000} |
|
|
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
self.model = YOLO('ultralyticsplus/yolov8s') |
|
|
|
def __call__(self, data: str) -> List[ObjectPrediction]: |
|
""" |
|
data args: |
|
image: image path to segment |
|
config: (conf - NMS confidence threshold, |
|
iou - NMS IoU threshold, |
|
agnostic_nms - NMS class-agnostic: True / False, |
|
max_det - maximum number of detections per image) |
|
Return: |
|
object_predictions |
|
""" |
|
config = DEFAULT_CONFIG |
|
|
|
self.model.overrides['conf'] = config.get('conf') |
|
self.model.overrides['iou'] = config.get('iou') |
|
self.model.overrides['agnostic_nms'] = config.get('agnostic_nms') |
|
self.model.overrides['max_det'] = config.get('max_det') |
|
|
|
|
|
inputs = data.pop("inputs", data) |
|
result = self.model.predict(inputs['image'])[0] |
|
|
|
names = self.model.model.names |
|
boxes = result.boxes |
|
|
|
object_predictions = [] |
|
if boxes is not None: |
|
det_ind = 0 |
|
for xyxy, conf, cls in zip(boxes.xyxy, boxes.conf, boxes.cls): |
|
object_prediction = ObjectPrediction( |
|
bbox=xyxy.tolist(), |
|
category_name=names[int(cls)], |
|
category_id=int(cls), |
|
score=conf, |
|
) |
|
object_predictions.append(object_prediction) |
|
det_ind += 1 |
|
return object_predictions |
|
|