--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer datasets: - iFaz/Whisper_Compatible_SER_benchmark metrics: - wer model-index: - name: whisper-SER-base-v1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Whisper_Compatible_SER_benchmark(Not train_augmented) type: iFaz/Whisper_Compatible_SER_benchmark args: 'config: en, split: test' metrics: - name: Wer type: wer value: 105.45094152626362 --- # whisper-SER-base-v1 This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Whisper_Compatible_SER_benchmark(Not train_augmented) dataset. It achieves the following results on the evaluation set: - Loss: 0.8757 - Wer: 105.4509 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 6000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 0.1761 | 2.4450 | 1000 | 0.5625 | 48.9594 | | 0.0796 | 4.8900 | 2000 | 0.5905 | 87.2151 | | 0.0201 | 7.3350 | 3000 | 0.7191 | 125.5203 | | 0.0054 | 9.7800 | 4000 | 0.7985 | 127.7998 | | 0.0012 | 12.2249 | 5000 | 0.8611 | 108.0278 | | 0.0008 | 14.6699 | 6000 | 0.8757 | 105.4509 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0