|
import logging |
|
import os |
|
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" |
|
os.environ["TF_ENABLE_ONEDNN_OPTS"] = "0" |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer |
|
import warnings |
|
|
|
|
|
warnings.filterwarnings("ignore", message="A NumPy version >=") |
|
logging.basicConfig(level=logging.ERROR) |
|
logging.getLogger("transformers").setLevel(logging.ERROR) |
|
|
|
|
|
|
|
try: |
|
import flash_attn |
|
flash_attn_exists = True |
|
except ImportError: |
|
flash_attn_exists = False |
|
|
|
|
|
|
|
class DeepthoughtModel: |
|
def __init__(self): |
|
self.model_name = "huihui-ai/deepthought-8b-abliterated" |
|
print(f"Loading model: {self.model_name}") |
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained( |
|
self.model_name, |
|
add_bos_token=False, |
|
trust_remote_code=True, |
|
padding="left", |
|
torch_dtype=torch.bfloat16, |
|
) |
|
|
|
self.model = AutoModelForCausalLM.from_pretrained( |
|
self.model_name, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto", |
|
attn_implementation=("flash_attention_2" if flash_attn_exists else "eager"), |
|
use_cache=True, |
|
trust_remote_code=True, |
|
) |
|
|
|
|
|
def _get_initial_prompt( |
|
self, query: str, system_message: str = None |
|
) -> str: |
|
'''Helper method to generate the initial prompt format.''' |
|
if system_message is None: |
|
system_message = '''You are a superintelligent AI system, capable of comprehensive reasoning. When provided with <reasoning>, you must provide your logical reasoning chain to solve the user query. Be verbose with your outputs.''' |
|
|
|
return f'''<|im_start|>system |
|
{system_message}<|im_end|> |
|
|
|
<|im_start|>user |
|
{query}<|im_end|> |
|
|
|
<|im_start|>reasoning |
|
<reasoning> |
|
[ |
|
{{ |
|
"step": 1, |
|
"type": "problem_understanding", |
|
"thought": "''' |
|
|
|
|
|
def generate_reasoning(self, query: str, system_message: str = None) -> dict: |
|
print('Generating reasoning...') |
|
|
|
|
|
prompt = self._get_initial_prompt(query, system_message) |
|
print(prompt, end='') |
|
|
|
|
|
inputs = self.tokenizer(prompt, return_tensors='pt').input_ids.to(self.model.device) |
|
|
|
try: |
|
|
|
|
|
outputs = self.model.generate( |
|
input_ids=inputs, |
|
max_new_tokens=800, |
|
do_sample=True, |
|
temperature=0.2, |
|
top_k=200, |
|
top_p=1.0, |
|
eos_token_id=self.tokenizer.eos_token_id, |
|
streamer=TextStreamer(self.tokenizer, skip_prompt=True, skip_special_tokens=True), |
|
) |
|
|
|
|
|
generated_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
return { |
|
'raw_output': generated_text, |
|
'success': True, |
|
'error': None, |
|
'initial_prompt': prompt, |
|
} |
|
|
|
except Exception as e: |
|
logging.error(f'Error during generation: {e}') |
|
return { |
|
'raw_output': None, |
|
'success': False, |
|
'error': str(e), |
|
'initial_prompt': None, |
|
} |
|
|
|
|
|
def generate_final_output(self, reasoning_output: dict) -> dict: |
|
|
|
|
|
reasoning_text = reasoning_output['raw_output'].replace(reasoning_output['initial_prompt'], '') |
|
full_prompt = f'''{reasoning_text}<|im_end|> |
|
|
|
<|im_start|>assistant |
|
''' |
|
|
|
print('Generating final response...') |
|
|
|
|
|
inputs = self.tokenizer(full_prompt, return_tensors='pt').input_ids.to(self.model.device) |
|
|
|
try: |
|
|
|
|
|
_ = self.model.generate( |
|
input_ids=inputs, |
|
max_new_tokens=400, |
|
do_sample=True, |
|
temperature=0.1, |
|
top_k=50, |
|
top_p=0.9, |
|
eos_token_id=self.tokenizer.eos_token_id, |
|
streamer=TextStreamer(self.tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
) |
|
|
|
return {'success': True, 'error': None} |
|
|
|
except Exception as e: |
|
logging.error(f'Error during final generation: {e}') |
|
return {'success': False, 'error': str(e)} |
|
|
|
|
|
def main(): |
|
model = DeepthoughtModel() |
|
|
|
|
|
queries = [ |
|
"We want you to tell us the answer to life, the universe and everything. We'd really like an answer, something simple.", |
|
] |
|
|
|
|
|
for query in queries: |
|
print(f'\nProcessing query: {query}') |
|
print('='*50) |
|
|
|
|
|
reasoning_result = model.generate_reasoning(query) |
|
if not reasoning_result['success']: |
|
print(f'\nError in reasoning: {reasoning_result["error"]}') |
|
print('='*50) |
|
continue |
|
|
|
print('-'*50) |
|
|
|
|
|
final_result = model.generate_final_output(reasoning_result) |
|
if not final_result['success']: |
|
print(f'\nError in final generation: {final_result["error"]}') |
|
|
|
print('='*50) |
|
|
|
if __name__ == '__main__': |
|
main() |
|
|